CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Syn/anti lateral protonation"

From CAZypedia
Jump to navigation Jump to search
Line 1: Line 1:
<!-- CURATORS: Please delete the {{UnderConstruction}} tag below when the page is ready for wider public consumption -->
 
{{UnderConstruction}}
 
 
* [[Author]]: ^^^Wim Nerinckx^^^
 
* [[Author]]: ^^^Wim Nerinckx^^^
 
* [[Responsible Curator]]:  ^^^Spencer Williams^^^
 
* [[Responsible Curator]]:  ^^^Spencer Williams^^^

Revision as of 20:29, 14 November 2012


Overview

This page provides a table that summarizes the spatial positioning of the catalytic general acid residue in the active sites of glycoside hydrolases, relative to the substrate. The table below updates those found in the seminal paper on this concept by Heightman and Vasella [1], and a following paper by Nerinckx et al. [2].

Background

The "not from above, but from the side" concept of semi-lateral glycosidic oxygen protonation by glycoside hydrolases was introduced by Heightman and Vasella [1]. It was originally only described for beta-equatorial glycoside hydrolases, but appears to be equally applicable to enzymes acting on an alpha-axial glycosidic bond [2]. When dividing subsite -1 into half-spaces by a plane defined by the glycosidic oxygen and C1' and H1' of the –1 glycoside, many ligand-complexed structures reveal that the proton donor is positioned either in the syn half-space (near the ring-oxygen of the –1 glycoside), or in the anti half-space (on the opposite side of the ring-oxygen). Members of the same GH family appear to share a common syn or anti protonator arrangement and further, this specificity appears to be preserved within Clans of families. This page's compilation of subsite -1 occupied complexes shows that about 70% of all GH families are anti protonators.

Closer inspection of –1/+1 subsite-spanning, substrate or substrate-analogue ligands in crystal structures reveals a further intriguing corollary [2], [3]. In substrate-bound complexes with anti protonating GH enzymes, the scissile anomeric bond (often studied using the thio-analogue) show a dihedral angle φ (O5'-C1'-[O,S]x-Cx) that is in the lowest-energy synclinal (gauche) arrangement. A rationale for this is that a minus synclinal dihedral angle φ for an equatorial glycosidic bond, or plus synclinal for an axial bond [4], allows for hyperconjugative overlap of the C1'-O5' antibonding orbital with an antiperiplanar-oriented lone pair orbital lobe of the glycosidic oxygen, thereby creating partial double bond character and stabilization of the glycosidic bond by 4–5 kcal/mol; this ground-state stabilizing phenomenon is known as the ‘exo-anomeric effect’ [5] [6]. Anti protonation results in interaction with the glycosidic oxygen’s antiperiplanar lone pair, which removes the stabilizing anomeric effect. This suggests that anti-protonation is an enzymic approach for lowering the activation barrier leading to the transition state (Figure 1 centre).

Syn protonating GHs show a rather different arrangement of the anomeric substituent of substrates or substrate-analogues [2], [3]. In many –1/+1 subsite-spanning ligand complexes the dihedral angle φ of the scissile bond has been rotated away from its lowest-energy synclinal position: clockwise to minus-anticlinal or antiperiplanar for beta-equatorial; counterclockwise to plus-anticlinal or antiperiplanar for alpha-axial anomeric bonds. This removes the hyperconjugative overlap resulting in the stabilizing exo-anomeric effect. Because of this rotation, the lone pair of the glycosidic oxygen points into the syn half-space, and is that protonated by the syn-positioned proton donor (Figure 1 right).

Figure 1. Newman projections, with the glycosidic oxygen as proximal atom and the anomeric carbon as distal atom, showing anti (centre) versus syn (right) semi-lateral protonation in beta-equatorial (top) and alpha-axial (bottom) glycoside hydrolases. The indicated φ is the dihedral angle for O5'-C1'-O4-C4.

Table of syn/anti protonation examples

Note

This table contains only one example per GH family of a ligand-complexed protein structure where the syn positioning or anti positioning of the proton donor can be clearly observed; other examples may be available on a family-by-family basis. The reader is thus advised to consult the CAZy database for a current, comprehensive list of CAZyme structures. Where available, the selected examples are Michaelis-type complexes with the ligand spanning the -1/+1 subsites, since these have an intact glycosidic or thioglycosidic bond, or are N-analogs of the substrate (e.g. acarbose). In some examples, the proton donor has been mutated (e.g., to the corresponding amide or to an alanine), and in those cases one may wish to look at a superposition of the given PDB example with the structure of the native enzyme. If a Michaelis-type complex is not yet available, the second and third example choices, respectively, are trapped glycosyl-enzyme intermediates and product complexes where subsite -1 is occupied.

Please also be aware that this is a large table with many data. Please contact the page Author or Responsible Curator with corrections.

Table

This table can be re-sorted by clicking on the icons in the header (javascript must be turned on in your browser). To reset the page to be sorted by GH family, click the page tab at the very top of the page.

Family Clan Structure fold Anomeric specificity Mechanism Syn/anti protonator Example PDB ID Enzyme Organism Ligand General acid Nucleophile or General base Reference
GH1 A (β/α)8 beta retaining anti 2cer β-glycosidase S Sulfolobus solfataricus P2 phenethyl glucoimidazol Glu206 Glu387 [7]
GH2 A (β/α)8 beta retaining anti 2vzu exo-β-glucosaminidase Amicolatopsis orientalis PNP-β-d-glucosamine Glu469 Glu541 [8]
GH3 none (β/α)8 beta retaining anti 1iex exo-1,3-1,4-glucanase Hordeum vulgare thiocellobiose Glu491 Asp285 [9]
GH5 A (β/α)8 beta retaining anti 1h2j endo-β-1,4-glucanase Bacillus agaradhaerens 2',4'-DNP-2-F-cellobioside Glu129 Glu228 [10]
GH6 none (β/α)8 beta inverting syn 1qjw cellobiohydrolase 2 Hypocrea jecorina (Glc)2-S-(Glc)2 Asp221 debated [11]
GH7 B β-jelly roll beta retaining syn 1ovw endo-1,4-glucanase Fusarium oxysporum thio-(Glc)5 Glu202 Glu197 [12]
GH8 M (α/α)6 beta inverting anti 1kwf endo-1,4-glucanase Clostridium thermocellum cellopentaose Glu95 Asp278 [13]
GH9 none (α/α)6 beta inverting syn 1rq5 cellobiohydrolase Clostridium thermocellum cellotetraose Glu795 Asp383 [14]
GH10 A (β/α)8 beta retaining anti 2d24 β-1,4-xylanase Streptomyces olivaceoviridis E-86 xylopentaose Glu128 Glu236 [15]
GH11 C β-jelly roll beta retaining syn 1bvv xylanase Bacillus circulans Xyl-2-F-xylosyl Glu172 Glu78 [16]
GH12 C β-jelly roll beta retaining syn 1w2u endoglucanase Humicola grisea thiocellotetraose Glu205 Glu120 [17]
GH13 H (β/α)8 alpha retaining anti 1cxk β-cyclodextrin glucanotransferase Bacillus circulans maltononaose Glu257 Asp229 [18]
GH14 none (β/α)8 alpha inverting syn 1itc β-amylase Bacillus cereus maltopentaose Glu172 Glu367 [19]
GH15 L (α/α)6 alpha inverting syn 1gah glucoamylase Aspergillus awamori acarbose Glu179 Glu400 [20]
GH16 B β-jelly roll beta retaining syn 1urx β-agarase A Zobellia galactanivorans oligoagarose Glu152 Glu147 [21]
GH17 A (β/α)8 beta retaining predicted anti by clan see e.g. at GH1
GH18 K (β/α)8 beta retaining anti 1ffr chitinase A Serratia marcescens (NAG)6 Glu315 internal [22]
GH20 K (β/α)8 beta retaining anti 1c7s chitobiase Serratia marcescens chitobiose Glu540 internal [23]
GH22 none lysozyme type beta retaining syn 1h6m lysozyme C Gallus gallus Chit-2-F-chitosyl Glu35 Asp52 [24]
GH23 none lysozyme type beta inverting syn 1lsp lysozyme G Cygnus atratus Bulgecin A Glu73 internal [25]
GH24 I α + β beta inverting syn 148l lysozyme E Bacteriophage T4 chitobiosyl Glu11 Glu26 [26]
GH26 A (β/α)8 beta retaining anti 1gw1 mannanase A Cellvibrio japonicus 2',4'-DNP-2-F-cellotrioside Glu212 Glu320 [27]
GH27 D (β/α)8 alpha retaining anti 1ktc α-N-acetyl galactosaminidase Gallus gallus NAGal Asp201 Asp410 [28]
GH28 N β-helix alpha inverting anti 2uvf exo-polygalacturonosidase Yersinia enterocolitica ATCC9610D digalacturonic acid Asp402 Asp381 Asp403 [29]
GH29 none (β/α)8 alpha retaining syn 1hl9 α-l-fucosidase Thermotoga maritima 2-F-fuco- pyranosyl Glu266 Asp224 [30]
GH30 A (β/α)8 beta retaining anti 2v3d glucocerebrosidase 1 Homo sapiens N-butyl-deoxynojirimycin Glu235 Glu340 [31]
GH31 D (β/α)8 alpha retaining anti 2qmj maltase-glucoamylase Homo sapiens acarbose Asp542 Asp443 [32]
GH32 J 5-fold β-propeller beta retaining anti 2add fructan β-(2,1)-fructosidase Cichorium intybus sucrose Glu201 Asp22 [33]
GH33 E 6-fold β-propeller alpha retaining anti 1s0i trans-sialidase Trypanosoma cruzi sialyl-lactose Asp59 Tyr342 [34]
GH34 E 6-fold β-propeller alpha retaining anti 2bat neuraminidase Influenza A virus sialic acid Asp151 Tyr406 [35]
GH35 A (β/α)8 beta retaining anti 1xc6 β-galactosidase Penicillium sp. d-galactose Glu200 Glu299 [36]
GH37 G (α/α)6 alpha inverting anti 2jf4 trehalase Escherechia coli validoxylamine Asp312 Glu496 [37]
GH38 none (β/α)7 alpha retaining anti 1qwn α-mannosidase II Drosophila melanogaster 5-F-β-l-gulosyl Asp341 Asp204 [38]
GH39 A (β/α)8 beta retaining anti 1uhv β-xylosidase Thermoanaerobacterium saccharolyticum 2-F-xylosyl Glu160 Glu277 [39]
GH42 A (β/α)8 beta retaining anti 1kwk β-galactosidase Thermus thermophylus A4 d-galactose Glu141 Glu312 [40]
GH44 none (β/α)8 beta retaining anti 2eqd endoglucanase Clostridium thermocellum cellooctaose Glu186 Glu359 [41]
GH45 none 6-strand. β-barrel beta inverting syn 4eng endo-1,4-glucanase Humicola insolens cellohexaose Asp121 Asp10 [42]
GH46 I α + β beta inverting predicted syn by clan see at GH24
GH47 none (α/α)7 alpha inverting anti 1x9d α-mannosidase I Homo sapiens Me-2-S-(α-Man)-2-thio-α-Man Asp463 Glu599 [43], [44]
GH48 M (α/α)6 beta inverting predicted anti by clan see at GH8
GH49 N β-helix alpha inverting predicted anti by clan see at GH28
GH50 A (β/α)8 beta retaining predicted anti by clan see e.g. at GH1
GH51 A (β/α)8 alpha retaining anti 1qw9 α-l-arabino- furanosidase Geobacillus stearothermophilus PNP-l-arabino-furanoside Glu175 Glu294 [45]
GH53 A (β/α)8 beta retaining predicted anti by clan see e.g. at GH1
GH54 none β-sandwich alpha retaining anti 1wd4 α-l-arabino- furanosidase B Aspergillus kawachii l-arabinofuranose Asp297 Glu221 [46]
GH55 none β-helix beta inverting anti 3eqo β-1,3-glucanase Phanerochaete chrysosporium K-3 d-gluconolacton Glu633 unknown [47]
GH56 none (β/α)7 beta retaining anti 1fcv hyaluronidase Apis mellifera (hyaluron.)4 Glu113 internal [48]
GH57 none (β/α)7 alpha retaining anti 1kly glucanotransferase Thermococcus litoralis acarbose Asp214 Glu123 [49]
GH59 A (β/α)8 beta retaining predicted anti by clan see e.g. at GH1
GH63 G (α/α)6 alpha inverting predicted anti by clan see at GH37
GH65 L (α/α)6 alpha inverting predicted syn by clan see at GH15
GH67 none (β/α)8 alpha inverting syn 1gql α-glucuronidase Cellvibrio japonicus Ueda107 d-glucuronic acid Glu292 unknown [50]
GH68 J 5-fold β-propeller beta retaining anti 1pt2 levansucrase Bacillus subtilis sucrose Glu342 Asp86 [51]
GH70 H (β/α)8 alpha retaining predicted anti by clan see e.g. at GH13
GH72 A (β/α)8 beta retaining anti 2w62 β-1,3-glucano- transferase Saccharomyces cerevisiae S288C laminaripentaose Glu176 Glu275 [52]
GH74 none 7-fold β-propeller beta inverting syn 2ebs cellobiohydrolase (OXG-RCBH) Geotrichum sp. m128 xyloglucan heptasaccharide Asp465 Asp35 [53]
GH77 H (β/α)8 alpha retaining anti 1esw amylomaltase Thermus aquaticus acarbose Asp395 Asp293 [54]
GH79 A (β/α)8 beta retaining predicted anti by clan see e.g. at GH1
GH80 I α + β beta inverting predicted syn by clan see at GH24
GH83 E 6-fold β-propeller alpha retaining predicted anti by clan see e.g. at GH33
GH84 none (β/α)8 beta retaining anti 2chn β-N-acetyl- glucosaminidase Bacteroides thetaiota- omicron VPI-5482 NAG-thiazoline Glu242 internal [55]
GH85 K (β/α)8 beta retaining anti 2w92 endo-β-N-acetyl- glucosaminidase D Streptococcus pneumoniae TIGR4 NAG-thiazoline Glu337 internal [56]
GH86 A (β/α)8 beta retaining predicted anti by clan see e.g. at GH1
GH89 none (β/α)8 alpha retaining anti 2vcb α-N-acetyl- glucosaminidase Clostridium perfringens PUGNAc Glu483 Glu601 [57]
GH92 none (α/α)6 + β-sandw. alpha inverting anti 2ww1 α-1,2-mannosidase Bacteroides thetaiota- omicron VPI-5482 thiomannobioside Glu533 Asp644 Asp642 [58]
GH93 E 6-fold β-propeller alpha retaining predicted anti by clan see e.g. at GH33
GH94 none (α/α)6 beta inverting syn 1v7x chitobiose phosphorylase Vibrio proteolyticus GlcNAc Asp492 phosphate [59]
GH95 none (α/α)6 alpha inverting anti 2ead α-1,2-l-fucosidase Bifidobacterium bifidum Fuc-α-1,2-Gal Glu566 Asn423 Asp766 [60]
GH97 none (β/α)8 alpha retaining + inverting anti 2zq0 α-glucosidase Bacteroides thetaiota- omicron VPI-5482 acarbose Glu532 Glu508 [61]
GH99 none (β/α)8 alpha retaining anti 4ad4 endo-α-mannosidase Bacteroides xylanisolvens glucose-1,3-isofagomine and α-1,2- mannobiose Glu336 debated [62]
GH102 none double-ψ β-barrel beta retaining syn 2pi8 lytic transglycosylase A Escherechia coli chitohexaose Asp308 none [63]
GH113 A (β/α)8 beta retaining predicted anti by clan see e.g. at GH1

References

Error fetching PMID 15642336:
Error fetching PMID 23137336:
Error fetching PMID 19733839:
Error fetching PMID 17002288:
Error fetching PMID 18976664:
Error fetching PMID 11709165:
Error fetching PMID 12595701:
Error fetching PMID 10508787:
Error fetching PMID 10200171:
Error fetching PMID 17666401:
Error fetching PMID 11884144:
Error fetching PMID 14756552:
Error fetching PMID 19279191:
Error fetching PMID 10220321:
Error fetching PMID 15364577:
Error fetching PMID 10331869:
Error fetching PMID 12741813:
Error fetching PMID 8679589:
Error fetching PMID 15062085:
Error fetching PMID 11560481:
Error fetching PMID 10884356:
Error fetching PMID 11518970:
Error fetching PMID 15299731:
Error fetching PMID 8259514:
Error fetching PMID 12203498:
Error fetching PMID 12005440:
Error fetching PMID 17397864:
Error fetching PMID 14715651:
Error fetching PMID 18036614:
Error fetching PMID 17335500:
Error fetching PMID 15130470:
Error fetching PMID 1438172:
Error fetching PMID 15491613:
Error fetching PMID 17455176:
Error fetching PMID 12960159:
Error fetching PMID 14659747:
Error fetching PMID 12215416:
Error fetching PMID 17905739:
Error fetching PMID 15299721:
Error fetching PMID 15713668:
Error fetching PMID 18619586:
Error fetching PMID 14517232:
Error fetching PMID 15292273:
Error fetching PMID 19193645:
Error fetching PMID 12618437:
Error fetching PMID 11937059:
Error fetching PMID 14517548:
Error fetching PMID 19097997:
Error fetching PMID 17498741:
Error fetching PMID 11082203:
Error fetching PMID 16565725:
Error fetching PMID 19181667:
Error fetching PMID 18443291:
Error fetching PMID 15274915:
Error fetching PMID 17459873:
Error fetching PMID 18981178:
Error fetching PMID 17502382:
Error fetching PMID 22219371:
  1. Heightman, T.D. and Vasella, A.T. (1999) Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. Angewandte Chemie-International Edition 38(6), 750-770. Article online.

    [HeightmanVasella1999]
  2. Error fetching PMID 15642336: [Nerinckx2005]
  3. Error fetching PMID 23137336: [Wu2012]
  4. Pérez S and Marchessault RH (1978) The exo-anomeric effect: experimental evidence from crystal structures. Carbohydr res 65, 114-120.

    [Perez1978]
  5. Cramer CJ, Truhlar DG and French AD (1997) Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution. Carbohydr res 298, 1-14.

    [Cramer1997]
  6. Error fetching PMID 19733839: [Johnson2009]
  7. Error fetching PMID 17002288: [Gloster2006]
  8. Error fetching PMID 18976664: [van_Bueren2009]
  9. Error fetching PMID 11709165: [Hrmova2001]
  10. Error fetching PMID 12595701: [Varrot2003]
  11. Error fetching PMID 10508787: [Zhou1999]
  12. Error fetching PMID 10200171: [Sulzenbacher1999]
  13. Error fetching PMID 11884144: [Guerin2002]
  14. Error fetching PMID 14756552: [Schubot2004]
  15. Error fetching PMID 19279191: [Suzuki2009]
  16. Error fetching PMID 10220321: [Sidhu1999]
  17. Error fetching PMID 15364577: [Sandgren2004]
  18. Error fetching PMID 10331869: [Uitdehaag1999]
  19. Error fetching PMID 12741813: [Miyake2003]
  20. Error fetching PMID 8679589: [Aleshin1996]
  21. Error fetching PMID 15062085: [Allouch2004]
  22. Error fetching PMID 11560481: [Papanikolau2001]
  23. Error fetching PMID 10884356: [Prag2000]
  24. Error fetching PMID 11518970: [Vocadlo2001]
  25. Error fetching PMID 15299731: [Karlsen1996]
  26. Error fetching PMID 8259514: [Baldwin1993]
  27. Error fetching PMID 12203498: [Ducros2002]
  28. Error fetching PMID 12005440: [Garman2002]
  29. Error fetching PMID 17397864: [Abbott2007]
  30. Error fetching PMID 14715651: [Sulzenbacher2004]
  31. Error fetching PMID 17666401: [Brumshtein2007]
  32. Error fetching PMID 18036614: [Sim2008]
  33. Error fetching PMID 17335500: [Verhaest2007]
  34. Error fetching PMID 15130470: [Amaya2004]
  35. Error fetching PMID 1438172: [Varghese1992]
  36. Error fetching PMID 15491613: [Rojas2004]
  37. Error fetching PMID 17455176: [Gibson2007]
  38. Error fetching PMID 12960159: [Numao2003]
  39. Error fetching PMID 14659747: [Yang2004]
  40. Error fetching PMID 12215416: [Hidaka2002]
  41. Error fetching PMID 17905739: [Kitago2007]
  42. Error fetching PMID 15299721: [Davies1996]
  43. Error fetching PMID 15713668: [Karaveg2005]
  44. Error fetching PMID 18619586: [Nerinckx2008]
  45. Error fetching PMID 14517232: [Hoevel2003]
  46. Error fetching PMID 15292273: [Miyanaga2004]
  47. Error fetching PMID 19193645: [Ishida2009]
  48. Marković-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Müller U, Schirmer T. Crystal structure of hyaluronidase, a major allergen of bee venom. Structure. 2000 Oct 15;8(10):1025-35.

    [Markovic-Housley2000]

    Note: Due to a problem with PubMed data, this reference is not automatically formatted. Please see these links out: DOI:10.1016/S0969-2126(00)00511-6 PMID:11080624

  49. Error fetching PMID 12618437: [Imamura2003]
  50. Error fetching PMID 11937059: [Nurizzo2002]
  51. Error fetching PMID 14517548: [Meng2003]
  52. Error fetching PMID 19097997: [Hurtado-Gerrero2009]
  53. Error fetching PMID 17498741: [Yaoi2007]
  54. Error fetching PMID 11082203: [Przylas2000]
  55. Error fetching PMID 16565725: [Dennis2006]
  56. Error fetching PMID 19181667: [Abbott2009]
  57. Error fetching PMID 18443291: [Ficko-Blean2008]
  58. Zhu et al. (2010) Nature Chemical Biology in the press; DOI: 10.1038/nchembio.278 direct link.

    [Zhu2009]
  59. Error fetching PMID 15274915: [Hidaka2004]
  60. Error fetching PMID 17459873: [Nagae2007]
  61. Error fetching PMID 18981178: [Kitamura2008]
  62. Error fetching PMID 22219371: [Thompson2012]
  63. Error fetching PMID 17502382: [van_Straaten2007]

All Medline abstracts: PubMed