CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.


CAZypedia needs your help!

We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.

Syn/anti lateral protonation

From CAZypedia
Revision as of 05:59, 17 December 2016 by Wim Nerinckx (talk | contribs) (cosmetic)
Jump to navigation Jump to search
Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Overview

This page provides a table that summarizes the spatial positioning of the catalytic general acid residue in the active sites of glycoside hydrolases, relative to the substrate. The table below updates those found in the seminal paper on this concept by Heightman and Vasella [1], and a following paper by Nerinckx et al. [2].

Background

The "not from above, but from the side" concept of semi-lateral glycosidic oxygen protonation by glycoside hydrolases was introduced by Heightman and Vasella [1]. It was originally only described for beta-equatorial glycoside hydrolases, but appears to be equally applicable to enzymes acting on an alpha-axial glycosidic bond [2]. When dividing subsite -1 into half-spaces by a plane defined by the glycosidic oxygen and C1' and H1' of the –1 glycoside, many ligand-complexed structures reveal that the proton donor is positioned either in the syn half-space (near the ring-oxygen of the –1 glycoside), or in the anti half-space (on the opposite side of the ring-oxygen). Members of the same GH family appear to share a common syn or anti protonator arrangement and further, this specificity appears to be preserved within Clans of families. This page's compilation of subsite -1 occupied complexes shows that about 70% of all GH families are anti protonators.

Closer inspection of crystal structures of –1/+1 subsite-spanning substrates, or substrate-analogue ligands, in complex with enzymes reveals a further intriguing corollary [2, 3]. In substrate-bound complexes with anti protonating GH enzymes, the scissile anomeric bond (often studied using the thio-analogue) shows a dihedral angle φ (O5'-C1'-[O,S]x-Cx) that is in the lowest-energy synclinal (gauche) conformation. The rationale for this is that a minus synclinal dihedral angle φ for an equatorial glycosidic bond, or plus synclinal for an axial glycosidic bond [4], allows for hyperconjugative overlap of the C1'-O5' antibonding orbital with an antiperiplanar-oriented lone pair orbital lobe of the glycosidic oxygen, thereby creating partial double bond character and stabilization of the glycosidic bond by 4–5 kcal/mol; this ground-state stabilizing phenomenon is known as the ‘exo-anomeric effect’ [5, 6]. Anti protonation occurs on the glycosidic oxygen’s antiperiplanar lone pair, thereby removing the stabilizing exo-anomeric effect. This suggests that anti protonation is an enzymic approach for lowering the activation barrier leading to the transition state (Figure 1 centre).

Syn protonating glycoside hydrolases apparently make use of a different approach [2, 3]. In many –1/+1 subsite-spanning ligand complexes, the dihedral angle φ of the scissile anomeric bond has been rotated away from its lowest-energy synclinal position: clockwise to minus-anticlinal or antiperiplanar for beta-equatorial; counterclockwise to plus-anticlinal or antiperiplanar for alpha-axial anomeric bonds. This removes the hyperconjugative overlap and thus also the stabilizing exo-anomeric effect. And because of this rotation, a lone pair of the glycosidic oxygen is directed into the syn half-space, allowing it to be protonated by the syn-positioned proton donor (Figure 1 right).

Figure 1. Newman projections, with the glycosidic oxygen as proximal atom and the anomeric carbon as distal atom, showing anti (centre) versus syn (right) semi-lateral protonation in beta-equatorial (top) and alpha-axial (bottom) glycoside hydrolases. The indicated φ is the dihedral angle for O5'-C1'-O4-C4.

Table of syn/anti protonation examples

This table contains only one example per GH family of a ligand-complexed protein structure where the syn or anti positioning of the proton donor can be clearly observed; other examples may be available on a family-by-family basis. The reader is thus advised to consult the CAZy database for a current, comprehensive list of CAZyme structures. Where available, the selected examples are Michaelis-type complexes with the ligand spanning the -1/+1 subsites, since these have an intact glycosidic or thioglycosidic bond, or are N-analogs of the substrate (e.g. acarbose). In some examples, the proton donor has been mutated (e.g., to the corresponding amide or to an alanine), and in those cases one may wish to look at a superposition of the given PDB example with the structure of the native enzyme. If a Michaelis-type complex is not yet available, the second and third example choices, respectively, are trapped glycosyl-enzyme intermediates and product complexes where subsite -1 is occupied.

Please also be aware that this is a large table with many data. Please contact the page Author or Responsible Curator with corrections.

Table

This table can be re-sorted by clicking on the icons in the header (javascript must be turned on in your browser). To reset the page to be sorted by GH family, click the page tab at the very top of the page.

Family Clan Structure fold Anomeric specificity Mechanism Syn/anti protonator Example PDB ID Enzyme Organism Ligand General acid Nucleophile or General base Reference
GH1 A (β/α)8 beta retaining anti 2cer β-glycosidase S Sulfolobus solfataricus P2 phenethyl glucoimidazole Glu206 Glu387 [7]
GH2 A (β/α)8 beta retaining anti 2vzu exo-β-glucosaminidase Amicolatopsis orientalis PNP-β-d-glucosamine Glu469 Glu541 [8]
GH3 none (β/α)8 beta retaining anti 1iex exo-1,3-1,4-glucanase Hordeum vulgare thiocellobiose Glu491 Asp285 [9]
GH5 A (β/α)8 beta retaining anti 1h2j endo-β-1,4-glucanase Bacillus agaradhaerens 2',4'-DNP-2-F-cellobioside Glu129 Glu228 [10]
GH6 none (β/α)8 beta inverting syn 1qjw cellobiohydrolase 2 Hypocrea jecorina (Glc)2-S-(Glc)2 Asp221 debated [11]
GH7 B β-jelly roll beta retaining syn 1ovw endo-1,4-glucanase Fusarium oxysporum thio-(Glc)5 Glu202 Glu197 [12]
GH8 M (α/α)6 beta inverting anti 1kwf endo-1,4-glucanase Clostridium thermocellum cellopentaose Glu95 Asp278 [13]
GH9 none (α/α)6 beta inverting syn 1rq5 cellobiohydrolase Clostridium thermocellum cellotetraose Glu795 Asp383 [14]
GH10 A (β/α)8 beta retaining anti 2d24 β-1,4-xylanase Streptomyces olivaceoviridis E-86 xylopentaose Glu128 Glu236 [15]
GH11 C β-jelly roll beta retaining syn 1bvv xylanase Bacillus circulans Xyl-2-F-xylosyl Glu172 Glu78 [16]
GH12 C β-jelly roll beta retaining syn 1w2u endoglucanase Humicola grisea thiocellotetraose Glu205 Glu120 [17]
GH13 H (β/α)8 alpha retaining anti 1cxk β-cyclodextrin glucanotransferase Bacillus circulans maltononaose Glu257 Asp229 [18]
GH14 none (β/α)8 alpha inverting syn 1itc β-amylase Bacillus cereus maltopentaose Glu172 Glu367 [19]
GH15 L (α/α)6 alpha inverting anti 1dog glucoamylase Aspergillus awamori 1-deoxynojirimycin Glu179 Glu400 [20]
GH16 B β-jelly roll beta retaining syn 1urx β-agarase A Zobellia galactanivorans oligoagarose Glu152 Glu147 [21]
GH17 A (β/α)8 beta retaining predicted anti by clan see e.g. at GH1
GH18 K (β/α)8 beta retaining anti 1ffr chitinase A Serratia marcescens (NAG)6 Glu315 internal [22]
GH19 none lysozyme type beta inverting syn 3wh1 chitinase Bryum coronatum (GlcNAc)4 Glu61 Glu70 [23]
GH20 K (β/α)8 beta retaining anti 1c7s chitobiase Serratia marcescens chitobiose Glu540 internal [24]
GH22 none lysozyme type beta retaining syn 1h6m lysozyme C Gallus gallus Chit-2-F-chitosyl Glu35 Asp52 [25]
GH23 none lysozyme type beta inverting syn 1lsp lysozyme G Cygnus atratus Bulgecin A Glu73 internal [26]
GH24 I α + β beta inverting syn 148l lysozyme E Bacteriophage T4 chitobiosyl Glu11 Glu26 [27]
GH26 A (β/α)8 beta retaining anti 1gw1 mannanase A Cellvibrio japonicus 2',4'-DNP-2-F-cellotrioside Glu212 Glu320 [28]
GH27 D (β/α)8 alpha retaining anti 1ktc α-N-acetyl galactosaminidase Gallus gallus NAGal Asp201 Asp410 [29]
GH28 N β-helix alpha inverting anti 2uvf exo-polygalacturonosidase Yersinia enterocolitica ATCC9610D digalacturonic acid Asp402 Asp381 Asp403 [30]
GH29 none (β/α)8 alpha retaining syn 1hl9 α-l-fucosidase Thermotoga maritima 2-F-fuco- pyranosyl Glu266 Asp224 [31]
GH30 A (β/α)8 beta retaining anti 2v3d glucocerebrosidase 1 Homo sapiens N-butyl-deoxynojirimycin Glu235 Glu340 [32]
GH31 D (β/α)8 alpha retaining anti 2qmj maltase-glucoamylase Homo sapiens acarbose Asp542 Asp443 [33]
GH32 J 5-fold β-propeller beta retaining anti 2add fructan β-(2,1)-fructosidase Cichorium intybus sucrose Glu201 Asp22 [34]
GH33 E 6-fold β-propeller alpha retaining anti 1s0i trans-sialidase Trypanosoma cruzi sialyl-lactose Asp59 Tyr342 [35]
GH34 E 6-fold β-propeller alpha retaining anti 2bat neuraminidase Influenza A virus sialic acid Asp151 Tyr406 [36]
GH35 A (β/α)8 beta retaining anti 1xc6 β-galactosidase Penicillium sp. d-galactose Glu200 Glu299 [37]
GH36 D (β/α)8 alpha retaining anti 4fns β-galactosidase Geobacillus stearothermophilus 1-deoxy galactonojirimycin Asp584 Asp478 [38]
GH37 G (α/α)6 alpha inverting anti 2jf4 trehalase Escherechia coli validoxylamine Asp312 Glu496 [39]
GH38 none (β/α)7 alpha retaining anti 1qwn α-mannosidase II Drosophila melanogaster 5-F-β-l-gulosyl Asp341 Asp204 [40]
GH39 A (β/α)8 beta retaining anti 1uhv β-xylosidase Thermoanaerobacterium saccharolyticum 2-F-xylosyl Glu160 Glu277 [41]
GH42 A (β/α)8 beta retaining anti 4ucf β-galactosidase Bifidobacterium bifidum d-galactose Glu161 Glu320 [42]
GH44 none (β/α)8 beta retaining anti 2eqd endoglucanase Clostridium thermocellum cellooctaose Glu186 Glu359 [43]
GH45 none 6-strand. β-barrel beta inverting syn 4eng endo-1,4-glucanase Humicola insolens cellohexaose Asp121 Asp10 [44]
GH46 I lysozyme type beta inverting syn 4olt chitosanase Pseudomonas sp. LL2(2010) d-glucosamine Glu25 Asp43 [45]
GH47 none (α/α)7 alpha inverting anti 1x9d α-mannosidase I Homo sapiens Me-2-S-(α-Man)-2-thio-α-Man Asp463 Glu599 [46], [47]
GH48 M (α/α)6 beta inverting predicted anti by clan see at GH8
GH49 N β-helix alpha inverting predicted anti by clan see at GH28
GH50 A (β/α)8 beta retaining anti 4bq5 exo-β-agarase Saccharophagus degradans neoagarotetraose Glu535 Glu695 [48]
GH51 A (β/α)8 alpha retaining anti 1qw9 α-l-arabinofuranosidase Geobacillus stearothermophilus PNP-l-arabino-furanoside Glu175 Glu294 [49]
GH52 O (α/α)6 beta retaining anti 4c1p β-xylosidase Geobacillus thermoglucosidasius xylobiose Asp517 Glu537 [50]
GH53 A (β/α)8 beta retaining anti 2ccr β-1,4-galactanase Bacillus licheniformis galactotriose Glu165 Glu263 [51]
GH54 none β-sandwich alpha retaining anti 1wd4 α-l-arabinofuranosidase B Aspergillus kawachii l-arabinofuranose Asp297 Glu221 [52]
GH55 none β-helix beta inverting anti 3eqo β-1,3-glucanase Phanerochaete chrysosporium K-3 d-gluconolacton Glu633 unknown [53]
GH56 none (β/α)7 beta retaining anti 1fcv hyaluronidase Apis mellifera (hyaluron.)4 Glu113 internal [54]
GH57 none (β/α)7 alpha retaining anti 1k1y glucanotransferase Thermococcus litoralis acarbose Asp214 Glu123 [55]
GH59 A (β/α)8 beta retaining anti 4ccc β-galactocerebrosidase Mus musculus PNP-β-d-gal Glu182 Glu258 [56]
GH63 G (α/α)6 alpha inverting predicted anti by clan see at GH37
GH65 L (α/α)6 alpha inverting anti 4ktr 2-O-α-glucosylglycerol phosphorylase Bacillus selenitireducens isofagomine Glu475 phosphate [57]
GH66 L (β/α)8 alpha retaining anti 5axh dextranase Thermoanaerobacter pseudethanolicus isomaltohexaose Glu374 Asp312 [58]
GH67 none (β/α)8 alpha inverting syn 1gql α-glucuronidase Cellvibrio japonicus Ueda107 d-glucuronic acid Glu292 unknown [59]
GH68 J 5-fold β-propeller beta retaining anti 1pt2 levansucrase Bacillus subtilis sucrose Glu342 Asp86 [60]
GH70 H (β/α)8 alpha retaining anti 3aic glucansucrase Streptococcus mutans α-acarbose Glu515 Asp477 [61]
GH72 A (β/α)8 beta retaining anti 2w62 β-1,3-glucanotransferase Saccharomyces cerevisiae S288C laminaripentaose Glu176 Glu275 [62]
GH74 none 7-fold β-propeller beta inverting syn 2ebs cellobiohydrolase (OXG-RCBH) Geotrichum sp. m128 xyloglucan heptasaccharide Asp465 Asp35 [63]
GH76 none (α/α)6 alpha retaining anti 5agd endo-α-1,6-mannanase Bacillus circulans α-1,6-mannopentaose Asp125 Asp124 [64]
GH77 H (β/α)8 alpha retaining anti 1esw amylomaltase Thermus aquaticus acarbose Asp395 Asp293 [65]
GH78 H (α/α)6 alpha inverting anti 3w5n α-l-rhamnosidase Streptomyces avermitilis l-rhamnose Glu636 Glu895 [66]
GH79 A (β/α)8 beta retaining anti 5e9c heparanase Homo sapiens heparin tetrasaccharide Glu225 Glu343 [67]
GH80 I α + β beta inverting predicted syn by clan see at GH24
GH83 E 6-fold β-propeller alpha retaining predicted anti by clan see e.g. at GH33
GH84 none (β/α)8 beta retaining anti 2chn β-N-acetyl- glucosaminidase Bacteroides thetaiota- omicron VPI-5482 NAG-thiazoline Glu242 internal [68]
GH85 K (β/α)8 beta retaining anti 2w92 endo-β-N-acetyl- glucosaminidase D Streptococcus pneumoniae TIGR4 NAG-thiazoline Glu337 internal [69]
GH86 A (β/α)8 beta retaining anti 4aw7 β-porphyranase Bacteroides plebeius porphyran fragment Glu152 Glu279 [70]
GH89 none (β/α)8 alpha retaining anti 2vcb α-N-acetyl- glucosaminidase Clostridium perfringens PUGNAc Glu483 Glu601 [71]
GH92 none (α/α)6 + β-sandw. alpha inverting anti 2ww1 α-1,2-mannosidase Bacteroides thetaiota- omicron VPI-5482 thiomannobioside Glu533 Asp644 Asp642 [72]
GH93 E 6-bladed β-propeller alpha retaining anti 3a72 exo-arabinanase Penicillium chrysogenum arabinobiose Glu246 Glu174 [73]
GH94 none (α/α)6 beta inverting syn 1v7x chitobiose phosphorylase Vibrio proteolyticus GlcNAc Asp492 phosphate [74]
GH95 none (α/α)6 alpha inverting anti 2ead α-1,2-l-fucosidase Bifidobacterium bifidum Fuc-α-1,2-Gal Glu566 Asn423 Asp766 [75]
GH97 none (β/α)8 alpha retaining + inverting anti 2zq0 α-glucosidase Bacteroides thetaiota- omicron VPI-5482 acarbose Glu532 Glu508 [76]
GH99 none (β/α)8 alpha retaining anti 4ad4 endo-α-mannosidase Bacteroides xylanisolvens glucose-1,3-isofagomine and α-1,2- mannobiose Glu336 debated [77]
GH100 none (α/α)6 core beta inverting anti 5gop invertase Anabaena (Nostoc) sp. pcc7120 sucrose Asp188 Glu414 [78]
GH102 none double-ψ β-barrel beta retaining syn 2pi8 lytic transglycosylase A Escherichia coli chitohexaose Asp308 none [79]
GH113 A (β/α)8 beta retaining anti 4cd8 β-mannanase Alicyclobacillus acidocaldarius mannobioimidazole Glu151 Glu231 [80]
GH117 none five-bladed β-propeller alpha inverting anti 4ak7 α-1,3-3,6-anhydro-l-galactosidase Bacteroides plebeius neoagarobiose His302 Asp90 [81]
GH123 none (β/α)8 + β-sandwich beta retaining anti 5fr0 exo-β-N-acetylgalactosaminidase Clostridium perfringens N-difluoroacetyl-d-galactosamine Glu345 internal [82]
GH125 L (α/α)6 alpha inverting anti 5m7y exo-α-1,6-mannosidase Clostridium perfringens 1,6-α-mannotriose Asp220 Glu393 [83]
GH127 none (α/α)6 + β-sandwich beta retaining anti 3wrg β-l-arabinofuranosidase Bifidobacterium longum l-arabinose Glu322 Cys417 [84]
GH128 A (β/α)8 beta retaining predicted anti by clan see e.g. at GH1
GH130 none five-bladed β-propeller beta inverting anti 5b0s β-1,2-mannobiose phosphorylase Listeria innocua β-1,2-mannotriose Asp141-relay phosphate [85]
GH134 none β + α beta inverting anti 5jug β-mannanase Streptomyces sp. mannopentaose Glu45 Asp57 [86]

References

Error fetching PMID 23137336:
Error fetching PMID 19733839:
Error fetching PMID 17002288:
Error fetching PMID 18976664:
Error fetching PMID 17666401:
Error fetching PMID 14756552:
Error fetching PMID 19279191:
Error fetching PMID 15364577:
Error fetching PMID 12741813:
Error fetching PMID 8431441:
Error fetching PMID 17397864:
Error fetching PMID 18036614:
Error fetching PMID 17335500:
Error fetching PMID 1438172:
Error fetching PMID 15491613:
Error fetching PMID 23012371:
Error fetching PMID 17455176:
Error fetching PMID 12960159:
Error fetching PMID 14659747:
Error fetching PMID 27685756:
Error fetching PMID 17905739:
Error fetching PMID 15299721:
Error fetching PMID 24766439:
Error fetching PMID 15713668:
Error fetching PMID 18619586:
Error fetching PMID 23921382:
Error fetching PMID 14517232:
Error fetching PMID 24816105:
Error fetching PMID 19089956:
Error fetching PMID 15292273:
Error fetching PMID 19193645:
Error fetching PMID 11080624:
Error fetching PMID 12618437:
Error fetching PMID 24297913:
Error fetching PMID 24828502:
Error fetching PMID 26494689:
Error fetching PMID 11937059:
Error fetching PMID 14517548:
Error fetching PMID 21354427:
Error fetching PMID 19097997:
Error fetching PMID 17498741:
Error fetching PMID 25772148:
Error fetching PMID 11082203:
Error fetching PMID 23486481:
Error fetching PMID 26575439:
Error fetching PMID 19181667:
Error fetching PMID 23150581:
Error fetching PMID 20081828:
Error fetching PMID 21543843:
Error fetching PMID 15274915:
Error fetching PMID 17459873:
Error fetching PMID 18981178:
Error fetching PMID 17502382:
Error fetching PMID 24582745:
Error fetching PMID 27777307:
Error fetching PMID 24339341:
Error fetching PMID 22393053:
Error fetching PMID 27038508:
Error fetching PMID 26632508:
  1. Heightman TD, and Vasella AT (1999) Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. Angewandte Chemie-International Edition 38(6), 750-770. Article online.

    [HeightmanVasella1999]
  2. Nerinckx W, Desmet T, Piens K, and Claeyssens M. (2005). An elaboration on the syn-anti proton donor concept of glycoside hydrolases: electrostatic stabilisation of the transition state as a general strategy. FEBS Lett. 2005;579(2):302-12. DOI:10.1016/j.febslet.2004.12.021 | PubMed ID:15642336 [Nerinckx2005]
  3. Error fetching PMID 23137336: [Wu2012]
  4. Pérez S, and Marchessault RH (1978) The exo-anomeric effect: experimental evidence from crystal structures. Carbohydr res 65, 114-120.

    [Perez1978]
  5. Cramer CJ, Truhlar DG, and French AD (1997) Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution. Carbohydr res 298, 1-14.

    [Cramer1997]
  6. Error fetching PMID 19733839: [Johnson2009]
  7. Error fetching PMID 17002288: [Gloster2006]
  8. Error fetching PMID 18976664: [van_Bueren2009]
  9. Hrmova M, Varghese JN, De Gori R, Smith BJ, Driguez H, and Fincher GB. (2001). Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant beta-D-glucan glucohydrolase. Structure. 2001;9(11):1005-16. DOI:10.1016/s0969-2126(01)00673-6 | PubMed ID:11709165 [Hrmova2001]
  10. Varrot A and Davies GJ. (2003). Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A. Acta Crystallogr D Biol Crystallogr. 2003;59(Pt 3):447-52. DOI:10.1107/s0907444902023405 | PubMed ID:12595701 [Varrot2003]
  11. Zou Jy, Kleywegt GJ, Ståhlberg J, Driguez H, Nerinckx W, Claeyssens M, Koivula A, Teeri TT, and Jones TA. (1999). Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei. Structure. 1999;7(9):1035-45. DOI:10.1016/s0969-2126(99)80171-3 | PubMed ID:10508787 [Zhou1999]
  12. Sulzenbacher G, Mackenzie LF, Wilson KS, Withers SG, Dupont C, and Davies GJ. (1999). The crystal structure of a 2-fluorocellotriosyl complex of the Streptomyces lividans endoglucanase CelB2 at 1.2 A resolution. Biochemistry. 1999;38(15):4826-33. DOI:10.1021/bi982648i | PubMed ID:10200171 [Sulzenbacher1999]
  13. Guérin DM, Lascombe MB, Costabel M, Souchon H, Lamzin V, Béguin P, and Alzari PM. (2002). Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate. J Mol Biol. 2002;316(5):1061-9. DOI:10.1006/jmbi.2001.5404 | PubMed ID:11884144 [Guerin2002]
  14. Error fetching PMID 14756552: [Schubot2004]
  15. Error fetching PMID 19279191: [Suzuki2009]
  16. Sidhu G, Withers SG, Nguyen NT, McIntosh LP, Ziser L, and Brayer GD. (1999). Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase. Biochemistry. 1999;38(17):5346-54. DOI:10.1021/bi982946f | PubMed ID:10220321 [Sidhu1999]
  17. Error fetching PMID 15364577: [Sandgren2004]
  18. Uitdehaag JC, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, and Dijkstra BW. (1999). X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat Struct Biol. 1999;6(5):432-6. DOI:10.1038/8235 | PubMed ID:10331869 [Uitdehaag1999]
  19. Error fetching PMID 12741813: [Miyake2003]
  20. Error fetching PMID 8431441: [Harris1993]
  21. Allouch J, Helbert W, Henrissat B, and Czjzek M. (2004). Parallel substrate binding sites in a beta-agarase suggest a novel mode of action on double-helical agarose. Structure. 2004;12(4):623-32. DOI:10.1016/j.str.2004.02.020 | PubMed ID:15062085 [Allouch2004]
  22. Papanikolau Y, Prag G, Tavlas G, Vorgias CE, Oppenheim AB, and Petratos K. (2001). High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry. 2001;40(38):11338-43. DOI:10.1021/bi010505h | PubMed ID:11560481 [Papanikolau2001]
  23. Error fetching PMID 24582745: [Ohnuma2014]
  24. Prag G, Papanikolau Y, Tavlas G, Vorgias CE, Petratos K, and Oppenheim AB. (2000). Structures of chitobiase mutants complexed with the substrate Di-N-acetyl-d-glucosamine: the catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540. J Mol Biol. 2000;300(3):611-7. DOI:10.1006/jmbi.2000.3906 | PubMed ID:10884356 [Prag2000]
  25. Vocadlo DJ, Davies GJ, Laine R, and Withers SG. (2001). Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature. 2001;412(6849):835-8. DOI:10.1038/35090602 | PubMed ID:11518970 [Vocadlo2001]
  26. Karlsen S, Hough E, Rao ZH, and Isaacs NW. (1996). Structure of a bulgecin-inhibited g-type lysozyme from the egg white of the Australian black swan. A comparison of the binding of bulgecin to three muramidases. Acta Crystallogr D Biol Crystallogr. 1996;52(Pt 1):105-14. DOI:10.1107/S0907444995008468 | PubMed ID:15299731 [Karlsen1996]
  27. Baldwin EP, Hajiseyedjavadi O, Baase WA, and Matthews BW. (1993). The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme. Science. 1993;262(5140):1715-8. DOI:10.1126/science.8259514 | PubMed ID:8259514 [Baldwin1993]
  28. Ducros VM, Zechel DL, Murshudov GN, Gilbert HJ, Szabó L, Stoll D, Withers SG, and Davies GJ. (2002). Substrate distortion by a beta-mannanase: snapshots of the Michaelis and covalent-intermediate complexes suggest a B(2,5) conformation for the transition state. Angew Chem Int Ed Engl. 2002;41(15):2824-7. DOI:10.1002/1521-3773(20020802)41:15<2824::AID-ANIE2824>3.0.CO;2-G | PubMed ID:12203498 [Ducros2002]
  29. Garman SC, Hannick L, Zhu A, and Garboczi DN. (2002). The 1.9 A structure of alpha-N-acetylgalactosaminidase: molecular basis of glycosidase deficiency diseases. Structure. 2002;10(3):425-34. DOI:10.1016/s0969-2126(02)00726-8 | PubMed ID:12005440 [Garman2002]
  30. Error fetching PMID 17397864: [Abbott2007]
  31. Sulzenbacher G, Bignon C, Nishimura T, Tarling CA, Withers SG, Henrissat B, and Bourne Y. (2004). Crystal structure of Thermotoga maritima alpha-L-fucosidase. Insights into the catalytic mechanism and the molecular basis for fucosidosis. J Biol Chem. 2004;279(13):13119-28. DOI:10.1074/jbc.M313783200 | PubMed ID:14715651 [Sulzenbacher2004]
  32. Error fetching PMID 17666401: [Brumshtein2007]
  33. Error fetching PMID 18036614: [Sim2008]
  34. Error fetching PMID 17335500: [Verhaest2007]
  35. Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, and Alzari PM. (2004). Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure. 2004;12(5):775-84. DOI:10.1016/j.str.2004.02.036 | PubMed ID:15130470 [Amaya2004]
  36. Error fetching PMID 1438172: [Varghese1992]
  37. Error fetching PMID 15491613: [Rojas2004]
  38. Error fetching PMID 23012371: [Merceron2012]
  39. Error fetching PMID 17455176: [Gibson2007]
  40. Error fetching PMID 12960159: [Numao2003]
  41. Error fetching PMID 14659747: [Yang2004]
  42. Error fetching PMID 27685756: [Godoy2016]
  43. Error fetching PMID 17905739: [Kitago2007]
  44. Error fetching PMID 15299721: [Davies1996]
  45. Error fetching PMID 24766439: [Lyu2014]
  46. Error fetching PMID 15713668: [Karaveg2005]
  47. Error fetching PMID 18619586: [Nerinckx2008]
  48. Error fetching PMID 23921382: [Pluvinage2013]
  49. Error fetching PMID 14517232: [Hoevel2003]
  50. Error fetching PMID 24816105: [Espina2014]
  51. Error fetching PMID 19089956: [Le_Nours2009]
  52. Error fetching PMID 15292273: [Miyanaga2004]
  53. Error fetching PMID 19193645: [Ishida2009]
  54. Error fetching PMID 11080624: [Markovic-Housley2000]
  55. Error fetching PMID 12618437: [Imamura2003]
  56. Error fetching PMID 24297913: [Hill2013]
  57. Error fetching PMID 24828502: [Touhara2014]
  58. Error fetching PMID 26494689: [Suzuki2016]
  59. Error fetching PMID 11937059: [Nurizzo2002]
  60. Error fetching PMID 14517548: [Meng2003]
  61. Error fetching PMID 21354427: [Ito2011]
  62. Error fetching PMID 19097997: [Hurtado-Gerrero2009]
  63. Error fetching PMID 17498741: [Yaoi2007]
  64. Error fetching PMID 25772148: [Thompson2015]
  65. Error fetching PMID 11082203: [Przylas2000]
  66. Error fetching PMID 23486481: [Fujimoto2013]
  67. Error fetching PMID 26575439: [Wu2015]
  68. Dennis RJ, Taylor EJ, Macauley MS, Stubbs KA, Turkenburg JP, Hart SJ, Black GN, Vocadlo DJ, and Davies GJ. (2006). Structure and mechanism of a bacterial beta-glucosaminidase having O-GlcNAcase activity. Nat Struct Mol Biol. 2006;13(4):365-71. DOI:10.1038/nsmb1079 | PubMed ID:16565725 [Dennis2006]
  69. Error fetching PMID 19181667: [Abbott2009]
  70. Error fetching PMID 23150581: [Hehemann_1_2012]
  71. Ficko-Blean E, Stubbs KA, Nemirovsky O, Vocadlo DJ, and Boraston AB. (2008). Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB. Proc Natl Acad Sci U S A. 2008;105(18):6560-5. DOI:10.1073/pnas.0711491105 | PubMed ID:18443291 [Ficko-Blean2008]
  72. Error fetching PMID 20081828: [Zhu2009]
  73. Error fetching PMID 21543843: [Sogabe2011]
  74. Error fetching PMID 15274915: [Hidaka2004]
  75. Error fetching PMID 17459873: [Nagae2007]
  76. Error fetching PMID 18981178: [Kitamura2008]
  77. Thompson AJ, Williams RJ, Hakki Z, Alonzi DS, Wennekes T, Gloster TM, Songsrirote K, Thomas-Oates JE, Wrodnigg TM, Spreitz J, Stütz AE, Butters TD, Williams SJ, and Davies GJ. (2012). Structural and mechanistic insight into N-glycan processing by endo-α-mannosidase. Proc Natl Acad Sci U S A. 2012;109(3):781-6. DOI:10.1073/pnas.1111482109 | PubMed ID:22219371 [Thompson2012]
  78. Error fetching PMID 27777307: [Xie2016]
  79. Error fetching PMID 17502382: [van_Straaten2007]
  80. Error fetching PMID 24339341: [Williams2014]
  81. Error fetching PMID 22393053: [Hehemann_2_2012]
  82. Error fetching PMID 27038508: [Noach2016]
  83. To be published

    [Alonso-Gil2016]
  84. Huang CH, Zhu Z, Cheng YS, Chan HC, Ko TP, Chen CC, Wang I, Ho MR, Hsu ST, Zeng YF, Huang YN, Liu JR, Guo RT. Structure and Catalytic Mechanism of a Glycoside Hydrolase Family-127 β-L-Arabinofuranosidase (HypBA1). J. Bioprocess Biotech. 2014 4:171 [DOI:10.4172/2155-9821.1000171]

    [Huang2014]
  85. Error fetching PMID 26632508: [Tsuda2015]
  86. Jin Y, Petricevic M, John A, Raich L, Jenkins H, Portela De Souza L, Cuskin F, Gilbert HJ, Rovira C, Goddard-Borger ED, Williams SJ, and Davies GJ. A β-Mannanase with a Lysozyme-like Fold and a Novel Molecular Catalytic Mechanism. ACS Cent. Sci. 2016 Nov DOI:10.1021/acscentsci.6b00232

    [Jin2016]

All Medline abstracts: PubMed