CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.


CAZypedia needs your help!

We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.

Difference between revisions of "Syn/anti lateral protonation"

From CAZypedia
Jump to navigation Jump to search
m (editing test)
(proton donor residue number correction in GH30: Glu165 (not 163))
 
(101 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{CuratorApproved}}
 
{{CuratorApproved}}
* [[Author]]: ^^^Wim Nerinckx^^^
+
* [[Author]]: [[User:Wim Nerinckx|Wim Nerinckx]]
* [[Responsible Curator]]:  ^^^Spencer Williams^^^
+
* [[Responsible Curator]]:  [[User:Spencer Williams|Spencer Williams]]
  
 
----
 
----
Line 13: Line 13:
 
The ''"not from above, but from the side"'' concept of semi-lateral glycosidic oxygen [[General_acid/base|protonation]] by [[glycoside hydrolase]]s was introduced by Heightman and Vasella <cite>HeightmanVasella1999</cite>. It was originally only described for [[Anomeric centre (alpha and beta)|beta]]-equatorial [[glycoside hydrolase]]s, but appears to be equally applicable to enzymes acting on an [[Anomeric centre (alpha and beta)|alpha]]-axial glycosidic bond <cite>Nerinckx2005</cite>. When dividing [[Sub-site nomenclature|subsite -1]] into half-spaces by a plane defined by the glycosidic oxygen and C1' and H1' of the –1 glycoside, many ligand-complexed structures reveal that the [[General_acid/base|proton donor]] is positioned either in the ''syn'' half-space (near the ring-oxygen of the –1 glycoside), or in the ''anti'' half-space (on the opposite side of the ring-oxygen). Members of the same GH [[Families|family]] appear to share a common ''syn'' or ''anti'' [[General_acid/base|protonator]] arrangement and further, this specificity appears to be preserved within [[Clans|Clans]] of [[Families|families]]. This page's compilation of [[Sub-site nomenclature|subsite -1]] occupied complexes shows that about 70% of all GH [[Families|families]] are ''anti'' [[General_acid/base|protonators]].
 
The ''"not from above, but from the side"'' concept of semi-lateral glycosidic oxygen [[General_acid/base|protonation]] by [[glycoside hydrolase]]s was introduced by Heightman and Vasella <cite>HeightmanVasella1999</cite>. It was originally only described for [[Anomeric centre (alpha and beta)|beta]]-equatorial [[glycoside hydrolase]]s, but appears to be equally applicable to enzymes acting on an [[Anomeric centre (alpha and beta)|alpha]]-axial glycosidic bond <cite>Nerinckx2005</cite>. When dividing [[Sub-site nomenclature|subsite -1]] into half-spaces by a plane defined by the glycosidic oxygen and C1' and H1' of the –1 glycoside, many ligand-complexed structures reveal that the [[General_acid/base|proton donor]] is positioned either in the ''syn'' half-space (near the ring-oxygen of the –1 glycoside), or in the ''anti'' half-space (on the opposite side of the ring-oxygen). Members of the same GH [[Families|family]] appear to share a common ''syn'' or ''anti'' [[General_acid/base|protonator]] arrangement and further, this specificity appears to be preserved within [[Clans|Clans]] of [[Families|families]]. This page's compilation of [[Sub-site nomenclature|subsite -1]] occupied complexes shows that about 70% of all GH [[Families|families]] are ''anti'' [[General_acid/base|protonators]].
  
Closer inspection of crystal structures of [[Sub-site nomenclature|–1/+1 subsite]]-spanning substrates, or substrate-analogue ligands, in complex with enzymes reveals a further intriguing corollary <cite>Nerinckx2005 Wu2012</cite>. In substrate-bound complexes with ''anti'' [[General_acid/base|protonating]] GH enzymes, the scissile [[Anomeric centre (alpha and beta)|anomeric bond]] (often studied using the thio-analogue) shows a dihedral angle φ (O5'-C1'-[O,S]x-Cx) that is in the lowest-energy synclinal (gauche) conformation. The rationale for this is that a minus synclinal dihedral angle φ for an equatorial glycosidic bond, or plus synclinal for an axial glycosidic bond <cite>Perez1978</cite>, allows for hyperconjugative overlap of the C1'-O5' antibonding orbital with an antiperiplanar-oriented lone pair orbital lobe of the glycosidic oxygen, thereby creating partial double bond character and stabilization of the glycosidic bond by 4–5 kcal/mol; this ground-state stabilizing phenomenon is known as the ‘exo-anomeric effect’ <cite>Cramer1997 Johnson2009</cite>. ''Anti'' [[General_acid/base|protonation]] occurs on the glycosidic oxygen’s antiperiplanar lone pair, thereby removing the stabilizing exo-anomeric effect. This suggests that ''anti'' [[General_acid/base|protonation]] is an enzymic approach for lowering the activation barrier leading to the [[Transition state|transition state]] (Figure 1 centre).
+
Closer inspection of crystal structures of [[Sub-site nomenclature|–1/+1 subsite]]-spanning substrates, or substrate-analogue ligands, in complex with enzymes reveals a further intriguing corollary <cite>Nerinckx2005 Wu2012</cite>. In substrate-bound complexes with ''anti'' [[General_acid/base|protonating]] GH enzymes, the scissile [[Anomeric centre (alpha and beta)|anomeric bond]] (often studied using the thio-analogue) shows a dihedral angle φ (O5'-C1'-[O,S]x-Cx) that is in the lowest-energy synclinal (gauche) conformation. The rationale for this is that a minus synclinal dihedral angle φ for an equatorial glycosidic bond, or plus synclinal for an axial glycosidic bond <cite>Perez1978</cite>, allows for hyperconjugative overlap of the C1'-O5' antibonding orbital with an antiperiplanar-oriented lone pair orbital lobe of the glycosidic oxygen, thereby creating partial double bond character and stabilization of the glycosidic bond by 4–5 kcal/mol; this ground-state stabilizing phenomenon is known as the ‘exo-anomeric effect’ <cite>Cramer1997 Johnson2009 Alonso2016</cite>. ''Anti'' [[General_acid/base|protonation]] occurs on the glycosidic oxygen’s antiperiplanar lone pair, thereby removing the stabilizing exo-anomeric effect. This suggests that ''anti'' [[General_acid/base|protonation]] is an enzymic approach for lowering the activation barrier leading to the [[Transition state|transition state]] (Figure 1 centre).
  
 
''Syn'' [[General_acid/base|protonating]] [[glycoside hydrolase]]s apparently make use of a different approach <cite>Nerinckx2005 Wu2012</cite>. In many [[Sub-site nomenclature|–1/+1 subsite]]-spanning ligand complexes, the dihedral angle φ of the scissile anomeric bond has been rotated away from its lowest-energy synclinal position: clockwise to minus-anticlinal or antiperiplanar for beta-equatorial; counterclockwise to plus-anticlinal or antiperiplanar for alpha-axial [[Anomeric centre (alpha and beta)|anomeric bonds]]. This removes the hyperconjugative overlap and thus also the stabilizing exo-anomeric effect. And because of this rotation, a lone pair of the glycosidic oxygen is directed into the ''syn'' half-space, allowing it to be protonated by the ''syn''-positioned [[General_acid/base|proton donor]] (Figure 1 right).
 
''Syn'' [[General_acid/base|protonating]] [[glycoside hydrolase]]s apparently make use of a different approach <cite>Nerinckx2005 Wu2012</cite>. In many [[Sub-site nomenclature|–1/+1 subsite]]-spanning ligand complexes, the dihedral angle φ of the scissile anomeric bond has been rotated away from its lowest-energy synclinal position: clockwise to minus-anticlinal or antiperiplanar for beta-equatorial; counterclockwise to plus-anticlinal or antiperiplanar for alpha-axial [[Anomeric centre (alpha and beta)|anomeric bonds]]. This removes the hyperconjugative overlap and thus also the stabilizing exo-anomeric effect. And because of this rotation, a lone pair of the glycosidic oxygen is directed into the ''syn'' half-space, allowing it to be protonated by the ''syn''-positioned [[General_acid/base|proton donor]] (Figure 1 right).
Line 26: Line 26:
  
 
=== Table ===
 
=== Table ===
This table can be re-sorted by clicking on the icons in the header (''javascript must be turned on in your browser'').  To reset the page to be sorted by GH family, click the <span style="color:blue">'''page'''</span> tab at the very top of the page.
+
This table can be re-sorted by clicking on the icons in the header (''javascript must be turned on in your browser'').  To reset the page to be sorted by GH family, click the ''View'' tab at the very top of the page.
  
 
{| {{Prettytable}} class="sortable"
 
{| {{Prettytable}} class="sortable"
Line 47: Line 47:
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2cer 2cer]
+
| [{{PDBlink}}pdb_00002cer pdb_00002cer]
 
| β-glycosidase S
 
| β-glycosidase S
 
| ''Sulfolobus solfataricus'' P2
 
| ''Sulfolobus solfataricus'' P2
 
| phenethyl glucoimidazole
 
| phenethyl glucoimidazole
| Glu206
+
| '''Glu206'''
 
| Glu387
 
| Glu387
 
| <cite>Gloster2006</cite>
 
| <cite>Gloster2006</cite>
Line 61: Line 61:
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}} / alpha-{{Smallcaps|l}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2vzu 2vzu]
+
| [{{PDBlink}}pdb_00002vzu pdb_00002vzu]
 
| exo-β-glucosaminidase
 
| exo-β-glucosaminidase
 
| ''Amicolatopsis orientalis''
 
| ''Amicolatopsis orientalis''
 
| PNP-β-{{Smallcaps|d}}-glucosamine
 
| PNP-β-{{Smallcaps|d}}-glucosamine
| Glu469
+
| '''Glu469'''
 
| Glu541
 
| Glu541
 
| <cite>van_Bueren2009</cite>
 
| <cite>van_Bueren2009</cite>
Line 75: Line 75:
 
| none
 
| none
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}} / alpha-{{Smallcaps|l}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1iex 1iex]
+
| [{{PDBlink}}pdb_00001iex pdb_00001iex]
 
| exo-1,3-1,4-glucanase
 
| exo-1,3-1,4-glucanase
 
| ''Hordeum vulgare''
 
| ''Hordeum vulgare''
 
| thiocellobiose
 
| thiocellobiose
| Glu491
+
| '''Glu491'''
 
| Asp285
 
| Asp285
 
| <cite>Hrmova2001</cite>
 
| <cite>Hrmova2001</cite>
 +
|-
 +
| [[GH4]]
 +
| none
 +
| Rossmann + α6/β3 + β3/α4
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00001u8x pdb_00001u8x]
 +
| 6-P-α-glucosidase
 +
| ''Bacillus subtilis''
 +
| alpha-{{Smallcaps|d}}-glucose-6-phosphate
 +
| '''Asp172'''
 +
| not applicable
 +
| <cite>Rajan2004</cite>
 
|-
 
|-
 
| [[GH5]]
 
| [[GH5]]
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1h2j 1h2j]
+
| [{{PDBlink}}pdb_00001h2j pdb_00001h2j]
 
| endo-β-1,4-glucanase
 
| endo-β-1,4-glucanase
 
| ''Bacillus agaradhaerens''
 
| ''Bacillus agaradhaerens''
 
| 2',4'-DNP-2-F-cellobioside
 
| 2',4'-DNP-2-F-cellobioside
| Glu129
+
| '''Glu129'''
 
| Glu228
 
| Glu228
 
| <cite>Varrot2003</cite>
 
| <cite>Varrot2003</cite>
Line 103: Line 117:
 
| none
 
| none
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}1qjw 1qjw]
+
| [{{PDBlink}}pdb_00001qjw pdb_00001qjw]
 
| cellobiohydrolase 2
 
| cellobiohydrolase 2
 
| ''Hypocrea jecorina''
 
| ''Hypocrea jecorina''
 
| (Glc)<sub>2</sub>-S-(Glc)<sub>2</sub>
 
| (Glc)<sub>2</sub>-S-(Glc)<sub>2</sub>
| Asp221
+
| '''Asp221'''
 
| debated
 
| debated
 
| <cite>Zhou1999</cite>
 
| <cite>Zhou1999</cite>
Line 117: Line 131:
 
| B
 
| B
 
| β-jelly roll
 
| β-jelly roll
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}1ovw 1ovw]
+
| [{{PDBlink}}pdb_00001ovw pdb_00001ovw]
 
| endo-1,4-glucanase
 
| endo-1,4-glucanase
 
| ''Fusarium oxysporum''
 
| ''Fusarium oxysporum''
 
| thio-(Glc)<sub>5</sub>
 
| thio-(Glc)<sub>5</sub>
| Glu202
+
| '''Glu202'''
 
| Glu197
 
| Glu197
 
| <cite>Sulzenbacher1999</cite>
 
| <cite>Sulzenbacher1999</cite>
Line 131: Line 145:
 
| M
 
| M
 
| (α/α)<sub>6</sub>
 
| (α/α)<sub>6</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1kwf 1kwf]
+
| [{{PDBlink}}pdb_00001kwf pdb_00001kwf]
 
| endo-1,4-glucanase
 
| endo-1,4-glucanase
 
| ''Clostridium thermocellum''
 
| ''Clostridium thermocellum''
 
| cellopentaose
 
| cellopentaose
| Glu95
+
| '''Glu95'''
 
| Asp278
 
| Asp278
 
| <cite>Guerin2002</cite>
 
| <cite>Guerin2002</cite>
Line 145: Line 159:
 
| none
 
| none
 
| (α/α)<sub>6</sub>
 
| (α/α)<sub>6</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}1rq5 1rq5]
+
| [{{PDBlink}}pdb_00001rq5 pdb_00001rq5]
 
| cellobiohydrolase
 
| cellobiohydrolase
 
| ''Clostridium thermocellum''
 
| ''Clostridium thermocellum''
 
| cellotetraose
 
| cellotetraose
| Glu795
+
| '''Glu795'''
 
| Asp383
 
| Asp383
 
| <cite>Schubot2004</cite>
 
| <cite>Schubot2004</cite>
Line 159: Line 173:
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2d24 2d24]
+
| [{{PDBlink}}pdb_00002d24 pdb_00002d24]
 
| β-1,4-xylanase
 
| β-1,4-xylanase
 
| ''Streptomyces olivaceoviridis'' E-86
 
| ''Streptomyces olivaceoviridis'' E-86
 
| xylopentaose
 
| xylopentaose
| Glu128
+
| '''Glu128'''
 
| Glu236
 
| Glu236
 
| <cite>Suzuki2009</cite>
 
| <cite>Suzuki2009</cite>
Line 173: Line 187:
 
| C
 
| C
 
| β-jelly roll
 
| β-jelly roll
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}1bvv 1bvv]
+
| [{{PDBlink}}pdb_00004hk8 pdb_00004hk8]
| xylanase
+
| endo-β-1,4-xylanase
| ''Bacillus circulans''
+
| ''Hypocrea jecorina''
| Xyl-2-F-xylosyl
+
| xylohexaose
| Glu172
+
| '''Glu177'''
| Glu78
+
| Glu86
| <cite>Sidhu1999</cite>
+
| <cite>Wan2014</cite>
 
|-
 
|-
 
| [[GH12]]
 
| [[GH12]]
 
| C
 
| C
 
| β-jelly roll
 
| β-jelly roll
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}1w2u 1w2u]
+
| [{{PDBlink}}pdb_00001w2u pdb_00001w2u]
 
| endoglucanase
 
| endoglucanase
 
| ''Humicola grisea''
 
| ''Humicola grisea''
 
| thiocellotetraose
 
| thiocellotetraose
| Glu205
+
| '''Glu205'''
 
| Glu120
 
| Glu120
 
| <cite>Sandgren2004</cite>
 
| <cite>Sandgren2004</cite>
Line 201: Line 215:
 
| H
 
| H
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1cxk 1cxk]
+
| [{{PDBlink}}pdb_00001cxk pdb_00001cxk]
 
| β-cyclodextrin glucanotransferase
 
| β-cyclodextrin glucanotransferase
 
| ''Bacillus circulans''
 
| ''Bacillus circulans''
 
| maltononaose
 
| maltononaose
| Glu257
+
| '''Glu257'''
 
| Asp229
 
| Asp229
 
| <cite>Uitdehaag1999</cite>
 
| <cite>Uitdehaag1999</cite>
Line 215: Line 229:
 
| none
 
| none
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}1itc 1itc]
+
| [{{PDBlink}}pdb_00001itc pdb_00001itc]
 
| β-amylase
 
| β-amylase
 
| ''Bacillus cereus''
 
| ''Bacillus cereus''
 
| maltopentaose
 
| maltopentaose
| Glu172
+
| '''Glu172'''
 
| Glu367
 
| Glu367
 
| <cite>Miyake2003</cite>
 
| <cite>Miyake2003</cite>
Line 229: Line 243:
 
| L
 
| L
 
| (α/α)<sub>6</sub>
 
| (α/α)<sub>6</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''syn''
+
| '''''anti'''''
| [{{PDBlink}}1gah 1gah]
+
| [{{PDBlink}}pdb_00001dog pdb_00001dog]
 
| glucoamylase
 
| glucoamylase
 
| ''Aspergillus awamori''
 
| ''Aspergillus awamori''
| acarbose
+
| 1-deoxynojirimycin
| Glu179
+
| '''Glu179'''
 
| Glu400
 
| Glu400
| <cite>Aleshin1996</cite>
+
| <cite>Harris1993</cite>
 
|-
 
|-
 
| [[GH16]]
 
| [[GH16]]
 
| B
 
| B
 
| β-jelly roll
 
| β-jelly roll
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}1urx 1urx]
+
| [{{PDBlink}}pdb_00001urx pdb_00001urx]
 
| β-agarase A
 
| β-agarase A
 
| ''Zobellia galactanivorans''
 
| ''Zobellia galactanivorans''
 
| oligoagarose
 
| oligoagarose
| Glu152
+
| '''Glu152'''
 
| Glu147
 
| Glu147
 
| <cite>Allouch2004</cite>
 
| <cite>Allouch2004</cite>
Line 257: Line 271:
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''predicted anti by clan''
+
| '''''anti'''''
| ''see e.g. at GH1''
+
| [{{PDBlink}}pdb_00004gzj pdb_00004gzj]
|  
+
| endo-β-1,3-glucanase
|  
+
| ''Solanum tuberosum''
|  
+
| laminaratriose + laminarabiose
|  
+
| '''Glu118'''
|  
+
| Glu259
|  
+
| <cite>Wojtkowiak2013</cite>
 
|-
 
|-
 
| [[GH18]]
 
| [[GH18]]
 
| K
 
| K
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1ffr 1ffr]
+
| [{{PDBlink}}pdb_00001ffr pdb_00001ffr]
 
| chitinase A
 
| chitinase A
 
| ''Serratia marcescens''
 
| ''Serratia marcescens''
 
| (NAG)<sub>6</sub>
 
| (NAG)<sub>6</sub>
| Glu315
+
| '''Glu315'''
 
| internal
 
| internal
 
| <cite>Papanikolau2001</cite>
 
| <cite>Papanikolau2001</cite>
 +
|-
 +
| [[GH19]]
 +
| none
 +
| lysozyme type
 +
| beta-{{Smallcaps|d}}
 +
| inverting
 +
| '''''syn'''''
 +
| [{{PDBlink}}pdb_00003wh1 pdb_00003wh1]
 +
| chitinase
 +
| ''Bryum coronatum''
 +
| (GlcNAc)<sub>4</sub>
 +
| '''Glu61'''
 +
| Glu70
 +
| <cite>Ohnuma2014</cite>
 
|-
 
|-
 
| [[GH20]]
 
| [[GH20]]
 
| K
 
| K
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1c7s 1c7s]
+
| [{{PDBlink}}pdb_00001c7s pdb_00001c7s]
 
| chitobiase
 
| chitobiase
 
| ''Serratia marcescens''
 
| ''Serratia marcescens''
 
| chitobiose
 
| chitobiose
| Glu540
+
| '''Glu540'''
 
| internal
 
| internal
 
| <cite>Prag2000</cite>
 
| <cite>Prag2000</cite>
Line 299: Line 327:
 
| none
 
| none
 
| lysozyme type
 
| lysozyme type
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}1h6m 1h6m]
+
| [{{PDBlink}}pdb_00001h6m pdb_00001h6m]
 
| lysozyme C
 
| lysozyme C
 
| ''Gallus gallus''
 
| ''Gallus gallus''
 
| Chit-2-F-chitosyl
 
| Chit-2-F-chitosyl
| Glu35
+
| '''Glu35'''
 
| Asp52
 
| Asp52
 
| <cite>Vocadlo2001</cite>
 
| <cite>Vocadlo2001</cite>
Line 313: Line 341:
 
| none
 
| none
 
| lysozyme type
 
| lysozyme type
| beta
+
| beta-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}1lsp 1lsp]
+
| [{{PDBlink}}pdb_00001lsp pdb_00001lsp]
 
| lysozyme G
 
| lysozyme G
 
| ''Cygnus atratus''
 
| ''Cygnus atratus''
 
| Bulgecin A
 
| Bulgecin A
| Glu73
+
| '''Glu73'''
 
| internal
 
| internal
 
| <cite>Karlsen1996</cite>
 
| <cite>Karlsen1996</cite>
Line 327: Line 355:
 
| I
 
| I
 
| α + β
 
| α + β
| beta
+
| beta-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}148l 148l]
+
| [{{PDBlink}}pdb_0000148l pdb_0000148l]
 
| lysozyme E
 
| lysozyme E
 
| Bacteriophage T4
 
| Bacteriophage T4
 
| chitobiosyl
 
| chitobiosyl
| Glu11
+
| '''Glu11'''
 
| Glu26
 
| Glu26
 
| <cite>Baldwin1993</cite>
 
| <cite>Baldwin1993</cite>
Line 341: Line 369:
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1gw1 1gw1]
+
| [{{PDBlink}}pdb_00002vx6 pdb_00002vx6]
| mannanase A
+
| exo-β-mannanase
| ''Cellvibrio japonicus''
+
| ''Cellvibrio japonicus'' Ueda107
| 2',4'-DNP-2-F-cellotrioside
+
| Gal1Man4
| Glu212
+
| '''Glu221'''
| Glu320
+
| Glu338
| <cite>Ducros2002</cite>
+
| <cite>Cartmell2008</cite>
 
|-
 
|-
 
| [[GH27]]
 
| [[GH27]]
 
| D
 
| D
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| alpha
+
| alpha-{{Smallcaps|d}} / beta-{{Smallcaps|l}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1ktc 1ktc]
+
| [{{PDBlink}}pdb_00003lrm pdb_00003lrm]
| α-''N''-acetyl galactosaminidase
+
| α-galactosidase
| ''Gallus gallus''
+
| ''Saccharomyces cerevisiae''
| NAGal
+
| raffinose
| Asp201
+
| '''Asp209'''
| Asp410
+
| Asp141
| <cite>Garman2002</cite>
+
| <cite>Fernandez-Leiro2010</cite>
 
|-
 
|-
 
| [[GH28]]
 
| [[GH28]]
 
| N
 
| N
 
| β-helix
 
| β-helix
| alpha
+
| alpha-{{Smallcaps|d}} (and α-{{Smallcaps|l}}-rham)
 
| inverting
 
| inverting
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2uvf 2uvf]
+
| [{{PDBlink}}pdb_00002uvf pdb_00002uvf]
 
| exo-polygalacturonosidase
 
| exo-polygalacturonosidase
 
| ''Yersinia enterocolitica'' ATCC9610D
 
| ''Yersinia enterocolitica'' ATCC9610D
 
| digalacturonic acid
 
| digalacturonic acid
| Asp402
+
| '''Asp402'''
 
| Asp381 Asp403
 
| Asp381 Asp403
 
| <cite>Abbott2007</cite>
 
| <cite>Abbott2007</cite>
 
|-
 
|-
 
| [[GH29]]
 
| [[GH29]]
| none
+
| R
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| alpha
+
| alpha-{{Smallcaps|l}}
 
| retaining
 
| retaining
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}1hl9 1hl9]
+
| [{{PDBlink}}pdb_00003uet pdb_00003uet]
| α-{{Smallcaps|l}}-fucosidase
+
| α-1,3/4-fucosidase
| ''Thermotoga maritima''
+
| ''Bifidobacterium longum'' subsp. infantis
| 2-F-fuco- pyranosyl
+
| lacto-''N''-fucopentaose II
| Glu266
+
| '''Glu217'''
| Asp224
+
| Asp172
| <cite>Sulzenbacher2004</cite>
+
| <cite>Sakurama2012</cite>
 
|-
 
|-
 
| [[GH30]]
 
| [[GH30]]
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2v3d 2v3d]
+
| [{{PDBlink}}pdb_00002y24 pdb_00002y24]
| glucocerebrosidase 1
+
| glucurono-xylanase
| ''Homo sapiens''
+
| ''Dickea chrysanthemi'' D1
| ''N''-butyl-deoxynojirimycin
+
| glucuronoxylan tetrasaccharide
| Glu235
+
| '''Glu165'''
| Glu340
+
| Glu253
| <cite>Brumshtein2007</cite>
+
| <cite>Urbanikova2011</cite>
 
|-
 
|-
 
| [[GH31]]
 
| [[GH31]]
 
| D
 
| D
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2qmj 2qmj]
+
| [{{PDBlink}}pdb_00002qmj pdb_00002qmj]
 
| maltase-glucoamylase
 
| maltase-glucoamylase
 
| ''Homo sapiens''
 
| ''Homo sapiens''
 
| acarbose
 
| acarbose
| Asp542
+
| '''Asp542'''
 
| Asp443
 
| Asp443
 
| <cite>Sim2008</cite>
 
| <cite>Sim2008</cite>
Line 425: Line 453:
 
| J
 
| J
 
| 5-fold β-propeller
 
| 5-fold β-propeller
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2add 2add]
+
| [{{PDBlink}}pdb_00002add pdb_00002add]
 
| fructan β-(2,1)-fructosidase  
 
| fructan β-(2,1)-fructosidase  
 
| ''Cichorium intybus''
 
| ''Cichorium intybus''
 
| sucrose
 
| sucrose
| Glu201
+
| '''Glu201'''
 
| Asp22
 
| Asp22
 
| <cite>Verhaest2007</cite>
 
| <cite>Verhaest2007</cite>
Line 439: Line 467:
 
| E
 
| E
 
| 6-fold β-propeller
 
| 6-fold β-propeller
| alpha
+
| alpha-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1s0i 1s0i]
+
| [{{PDBlink}}pdb_00001s0i pdb_00001s0i]
| trans-sialidase
+
| transsialidase
 
| ''Trypanosoma cruzi''
 
| ''Trypanosoma cruzi''
| sialyl-lactose
+
| sialyllactose
| Asp59
+
| '''Asp59'''
| Tyr342
+
| Tyr342 (with Glu230)
 
| <cite>Amaya2004</cite>
 
| <cite>Amaya2004</cite>
 
|-
 
|-
Line 453: Line 481:
 
| E
 
| E
 
| 6-fold β-propeller
 
| 6-fold β-propeller
| alpha
+
| alpha-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2bat 2bat]
+
| [{{PDBlink}}pdb_00004gzw pdb_00004gzw]
| neuraminidase
+
| N2 neuraminidase
| ''Influenza'' A virus
+
| ''Influenza'' A Tanzania/205/2010 H3N2
| sialic acid
+
| α-{{Smallcaps|d}}-Neup5Ac-(2,3)-β-{{Smallcaps|d}}-Galp-(1,4)-β-{{Smallcaps|d}}-GlcpNAc
| Asp151
+
| '''Asp151'''
| Tyr406
+
| Tyr406 (with Glu277)
| <cite>Varghese1992</cite>
+
| <cite>Zhu2012</cite>
 
|-
 
|-
 
| [[GH35]]
 
| [[GH35]]
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00003ogv pdb_00003ogv]
 +
| β-galactosidase
 +
| ''Hypocrea jecorina''
 +
| 2-phenylethyl 1-thio-β-{{Smallcaps|d}}-galactopyranoside
 +
| '''Glu200'''
 +
| Glu298
 +
| <cite>Maksimainen2011</cite>
 +
|-
 +
| [[GH36]]
 +
| D
 +
| (β/α)<sub>8</sub>
 +
| alpha-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1xc6 1xc6]
+
| [{{PDBlink}}pdb_00004fnu pdb_00004fnu]
 
| β-galactosidase
 
| β-galactosidase
| ''Penicillium sp.''
+
| ''Geobacillus stearothermophilus''
| {{Smallcaps|d}}-galactose
+
| stachyose
| Glu200
+
| '''Asp584'''
| Glu299
+
| Asp478
| <cite>Rojas2004</cite>
+
| <cite>Merceron2012</cite>
 
|-
 
|-
 
| [[GH37]]
 
| [[GH37]]
 
| G
 
| G
 
| (α/α)<sub>6</sub>
 
| (α/α)<sub>6</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2jf4 2jf4]
+
| [{{PDBlink}}pdb_00002jf4 pdb_00002jf4]
 
| trehalase
 
| trehalase
| ''Escherechia coli''
+
| ''Escherichia coli''
 
| validoxylamine
 
| validoxylamine
| Asp312
+
| '''Asp312'''
 
| Glu496
 
| Glu496
 
| <cite>Gibson2007</cite>
 
| <cite>Gibson2007</cite>
Line 495: Line 537:
 
| none
 
| none
 
| (β/α)<sub>7</sub>
 
| (β/α)<sub>7</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1qwn 1qwn]
+
| [{{PDBlink}}pdb_00003czn pdb_00003czn]
| α-mannosidase II
+
| Golgi α-mannosidase II
 
| ''Drosophila melanogaster''
 
| ''Drosophila melanogaster''
| 5-F-β-{{Smallcaps|l}}-gulosyl
+
| GlcNAcMan(5)GlcNAc(2)
| Asp341
+
| '''Asp341'''
 
| Asp204
 
| Asp204
| <cite>Numao2003</cite>
+
| <cite>Shah2008</cite>
 
|-
 
|-
 
| [[GH39]]
 
| [[GH39]]
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}} / alpha-{{Smallcaps|l}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1uhv 1uhv]
+
| [{{PDBlink}}pdb_00002bfg pdb_00002bfg]
 
| β-xylosidase
 
| β-xylosidase
| ''Thermoanaerobacterium saccharolyticum''
+
| ''Geobacillus stearothermophilus''
| 2-F-xylosyl
+
| 2,5-dinitrophenyl-β-{{Smallcaps|d}}-xyloside
| Glu160
+
| '''Glu160'''
| Glu277
+
| Glu278
| <cite>Yang2004</cite>
+
| <cite>Czjzek2005</cite>
 
|-
 
|-
 
| [[GH42]]
 
| [[GH42]]
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}} / alpha-{{Smallcaps|l}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1kwk 1kwk]
+
| [{{PDBlink}}pdb_00004ucf pdb_00004ucf]
 
| β-galactosidase
 
| β-galactosidase
| ''Thermus thermophylus'' A4
+
| ''Bifidobacterium bifidum''
 
| {{Smallcaps|d}}-galactose
 
| {{Smallcaps|d}}-galactose
| Glu141
+
| '''Glu161'''
| Glu312
+
| Glu320
| <cite>Hidaka2002</cite>
+
| <cite>Godoy2016</cite>
 +
|-
 +
| [[GH43]]
 +
| F
 +
| 5-fold β-propeller
 +
| beta-{{Smallcaps|d}} / alpha-{{Smallcaps|l}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00003akh pdb_00003akh]
 +
| exo-1,5-α-{{Smallcaps|l}}-arabinofuranosidase
 +
| ''Streptomyces avermitilis''
 +
| α-1,5-arabinofuranotriose
 +
| '''Glu196'''
 +
| Asp220
 +
| <cite>Fujimoto2010</cite>
 
|-
 
|-
 
| [[GH44]]
 
| [[GH44]]
 
| none
 
| none
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2eqd 2eqd]
+
| [{{PDBlink}}pdb_00002eqd pdb_00002eqd]
 
| endoglucanase
 
| endoglucanase
 
| ''Clostridium thermocellum''
 
| ''Clostridium thermocellum''
 
| cellooctaose
 
| cellooctaose
| Glu186
+
| '''Glu186'''
 
| Glu359
 
| Glu359
 
| <cite>Kitago2007</cite>
 
| <cite>Kitago2007</cite>
Line 550: Line 606:
 
| [[GH45]]
 
| [[GH45]]
 
| none
 
| none
| 6-strand. β-barrel
+
| 6-stranded β-barrel
| beta
+
| beta-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}4eng 4eng]
+
| [{{PDBlink}}pdb_00004eng pdb_00004eng]
 
| endo-1,4-glucanase
 
| endo-1,4-glucanase
 
| ''Humicola insolens''
 
| ''Humicola insolens''
 
| cellohexaose
 
| cellohexaose
| Asp121
+
| '''Asp121'''
 
| Asp10
 
| Asp10
 
| <cite>Davies1996</cite>
 
| <cite>Davies1996</cite>
Line 564: Line 620:
 
| [[GH46]]
 
| [[GH46]]
 
| I
 
| I
| α + β
+
| lysozyme type
| beta
+
| beta-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''predicted syn by clan''
+
| '''''syn'''''
| ''see at GH24''
+
| [{{PDBlink}}pdb_00004olt pdb_00004olt]
|  
+
| chitosanase
|  
+
| ''Microbacterium sp.'' OU01
|  
+
| hexa-glucosamine
|  
+
| '''Glu25'''
|  
+
| Asp43
|  
+
| <cite>Lyu2014</cite>
 
|-
 
|-
 
| [[GH47]]
 
| [[GH47]]
 
| none
 
| none
 
| (α/α)<sub>7</sub>
 
| (α/α)<sub>7</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1x9d 1x9d]
+
| [{{PDBlink}}pdb_00001x9d pdb_00001x9d]
 
| α-mannosidase I
 
| α-mannosidase I
 
| ''Homo sapiens''
 
| ''Homo sapiens''
 
| Me-2-S-(α-Man)-2-thio-α-Man
 
| Me-2-S-(α-Man)-2-thio-α-Man
| Asp463
+
| '''Asp463'''
 
| Glu599
 
| Glu599
 
| <cite>Karaveg2005</cite>, <cite>Nerinckx2008</cite>
 
| <cite>Karaveg2005</cite>, <cite>Nerinckx2008</cite>
Line 593: Line 649:
 
| M
 
| M
 
| (α/α)<sub>6</sub>
 
| (α/α)<sub>6</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| inverting
 
| inverting
 
| ''predicted anti by clan''
 
| ''predicted anti by clan''
Line 607: Line 663:
 
| N
 
| N
 
| β-helix
 
| β-helix
| alpha
+
| alpha-{{Smallcaps|d}}
 
| inverting
 
| inverting
 
| ''predicted anti by clan''
 
| ''predicted anti by clan''
Line 621: Line 677:
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''predicted anti by clan''
+
| '''''anti'''''
| ''see e.g. at GH1''
+
| [{{PDBlink}}pdb_00004bq5 pdb_00004bq5]
|  
+
| exo-β-agarase
|  
+
| ''Saccharophagus degradans''
|  
+
| neoagarotetraose
|  
+
| '''Glu535'''
|  
+
| Glu695
|  
+
| <cite>Pluvinage2013</cite>
 
|-
 
|-
 
| [[GH51]]
 
| [[GH51]]
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| alpha
+
| beta-{{Smallcaps|d}} / alpha-{{Smallcaps|l}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1qw9 1qw9]
+
| [{{PDBlink}}pdb_00001qw9 pdb_00001qw9]
| α-{{Smallcaps|l}}-arabino- furanosidase
+
| α-{{Smallcaps|l}}-arabinofuranosidase
 
| ''Geobacillus stearothermophilus''
 
| ''Geobacillus stearothermophilus''
| PNP-{{Smallcaps|l}}-arabino-furanoside
+
| PNP-{{Smallcaps|l}}-arabinofuranoside
| Glu175
+
| '''Glu175'''
 
| Glu294
 
| Glu294
 
| <cite>Hoevel2003</cite>
 
| <cite>Hoevel2003</cite>
 +
|-
 +
| [[GH52]]
 +
| O
 +
| (α/α)<sub>6</sub>
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| '' predicted perpendicular by clan, see at GH116''
 +
| [{{PDBlink}}pdb_00004c1p pdb_00004c1p]
 +
| β-xylosidase
 +
| ''Geobacillus thermoglucosidasius''
 +
| xylobiose
 +
| '''Asp517'''
 +
| Glu537
 +
| <cite>Espina2014</cite>
 
|-
 
|-
 
| [[GH53]]
 
| [[GH53]]
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''predicted anti by clan''
+
| '''''anti'''''
| ''see e.g. at GH1''
+
| [{{PDBlink}}pdb_00002ccr pdb_00002ccr]
|  
+
| β-1,4-galactanase
|  
+
| ''Bacillus licheniformis''
|  
+
| galactotriose
|  
+
| '''Glu165'''
|  
+
| Glu263
|  
+
| <cite>Le_Nours2009</cite>
 
|-
 
|-
 
| [[GH54]]
 
| [[GH54]]
 
| none
 
| none
 
| β-sandwich
 
| β-sandwich
| alpha
+
| beta-{{Smallcaps|d}} / alpha-{{Smallcaps|l}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1wd4 1wd4]
+
| [{{PDBlink}}pdb_00001wd4 pdb_00001wd4]
| α-{{Smallcaps|l}}-arabino- furanosidase B
+
| α-{{Smallcaps|l}}-arabinofuranosidase B
 
| ''Aspergillus kawachii''
 
| ''Aspergillus kawachii''
 
| {{Smallcaps|l}}-arabinofuranose
 
| {{Smallcaps|l}}-arabinofuranose
| Asp297
+
| '''Asp297'''
 
| Glu221
 
| Glu221
 
| <cite>Miyanaga2004</cite>
 
| <cite>Miyanaga2004</cite>
Line 677: Line 747:
 
| none
 
| none
 
| β-helix
 
| β-helix
| beta
+
| beta-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''anti''
+
| '''''syn'''''
| [{{PDBlink}}3eqo 3eqo]
+
| [{{PDBlink}}pdb_00004tz5 pdb_00004tz5]
| β-1,3-glucanase
+
| exo-β-1,3-glucanase
| ''Phanerochaete chrysosporium'' K-3
+
| ''Streptomyces sp.'' SirexAA-E
| {{Smallcaps|d}}-gluconolacton
+
| laminarihexaose
| Glu633
+
| '''Glu502'''
 
| unknown
 
| unknown
| <cite>Ishida2009</cite>
+
| <cite>Bianchetti2015</cite>
 
|-
 
|-
 
| [[GH56]]
 
| [[GH56]]
 
| none
 
| none
 
| (β/α)<sub>7</sub>
 
| (β/α)<sub>7</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1fcv 1fcv]
+
| [{{PDBlink}}pdb_00001fcv pdb_00001fcv]
 
| hyaluronidase
 
| hyaluronidase
 
| ''Apis mellifera''
 
| ''Apis mellifera''
 
| (hyaluron.)<sub>4</sub>
 
| (hyaluron.)<sub>4</sub>
| Glu113
+
| '''Glu113'''
 
| internal
 
| internal
 
| <cite>Markovic-Housley2000</cite>
 
| <cite>Markovic-Housley2000</cite>
 
|-
 
|-
 
| [[GH57]]
 
| [[GH57]]
| none
+
| T
 
| (β/α)<sub>7</sub>
 
| (β/α)<sub>7</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1kly 1kly]
+
| [{{PDBlink}}pdb_00001k1y pdb_00001k1y]
 
| glucanotransferase
 
| glucanotransferase
 
| ''Thermococcus litoralis''
 
| ''Thermococcus litoralis''
 
| acarbose
 
| acarbose
| Asp214
+
| '''Asp214'''
 
| Glu123
 
| Glu123
 
| <cite>Imamura2003</cite>
 
| <cite>Imamura2003</cite>
Line 719: Line 789:
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''predicted anti by clan''
+
| '''''anti'''''
| ''see e.g. at GH1''
+
| [{{PDBlink}}pdb_00004ccc pdb_00004ccc]
|  
+
| β-galactocerebrosidase
|  
+
| ''Mus musculus''
|  
+
| PNP-β-{{Smallcaps|d}}-galactoside
|  
+
| '''Glu182'''
|  
+
| Glu258
|  
+
| <cite>Hill2013</cite>
 +
|-
 +
| [[GH62]]
 +
| F
 +
| 5-fold β-propeller
 +
| alpha-{{Smallcaps|l}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00003wn0 pdb_00003wn0]
 +
| α-{{Smallcaps|l}}-arabinofuranosidase
 +
| ''Streptomyces coelicolor''
 +
| β-{{Smallcaps|l}}-Arabinofuranose
 +
| '''Glu361'''
 +
| Asp202
 +
| <cite>Maehara2014</cite>
 
|-
 
|-
 
| [[GH63]]
 
| [[GH63]]
 
| G
 
| G
 
| (α/α)<sub>6</sub>
 
| (α/α)<sub>6</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''predicted anti by clan''
+
| '''''anti'''''
| ''see at GH37''
+
| [{{PDBlink}}pdb_00005ca3 pdb_00005ca3]
|  
+
| α-glucosidase
|  
+
| ''Escherichia coli''
|  
+
| glucose and lactose
|  
+
| '''Asp501'''
|  
+
| Glu727
|  
+
| <cite>Miyazaki2016</cite>
 
|-
 
|-
 
| [[GH65]]
 
| [[GH65]]
 
| L
 
| L
 
| (α/α)<sub>6</sub>
 
| (α/α)<sub>6</sub>
| alpha
+
| alpha-{{Smallcaps|d}} (and α-{{Smallcaps|l}}-rham)
 
| inverting
 
| inverting
| ''predicted syn by clan''
+
| '''''anti'''''
| ''see at GH15''
+
| [{{PDBlink}}pdb_00004ktr pdb_00004ktr]
|  
+
| 2-O-α-glucosylglycerol phosphorylase
|  
+
| ''Bacillus selenitireducens''
|  
+
| isofagomine
|  
+
| '''Glu475'''
|  
+
| phosphate
|  
+
| <cite>Touhara2014</cite>
 +
|-
 +
| [[GH66]]
 +
| none
 +
| (β/α)<sub>8</sub>
 +
| alpha-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00005axh pdb_00005axh]
 +
| dextranase
 +
| ''Thermoanaerobacter pseudethanolicus''
 +
| isomaltohexaose
 +
| '''Glu374'''
 +
| Asp312
 +
| <cite>Suzuki2016</cite>
 
|-
 
|-
 
| [[GH67]]
 
| [[GH67]]
 
| none
 
| none
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}1gql 1gql]
+
| [{{PDBlink}}pdb_00001l8n pdb_00001l8n]
 
| α-glucuronidase
 
| α-glucuronidase
| ''Cellvibrio japonicus'' Ueda107
+
| ''Geobacillus stearothermophilus''
| {{Smallcaps|d}}-glucuronic acid
+
| 4-O-methyl-{{Smallcaps|d}}-glucuronic acid and xylotriose
| Glu292
+
| '''Glu286'''
| unknown
+
| Asp364 Glu392
| <cite>Nurizzo2002</cite>
+
| <cite>Golan2004</cite>
 
|-
 
|-
 
| [[GH68]]
 
| [[GH68]]
 
| J
 
| J
 
| 5-fold β-propeller
 
| 5-fold β-propeller
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1pt2 1pt2]
+
| [{{PDBlink}}pdb_00001pt2 pdb_00001pt2]
 
| levansucrase
 
| levansucrase
 
| ''Bacillus subtilis''
 
| ''Bacillus subtilis''
 
| sucrose
 
| sucrose
| Glu342
+
| '''Glu342'''
 
| Asp86
 
| Asp86
 
| <cite>Meng2003</cite>
 
| <cite>Meng2003</cite>
Line 789: Line 887:
 
| H
 
| H
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''predicted anti by clan''
+
| '''''anti'''''
| ''see e.g. at GH13''
+
| [{{PDBlink}}pdb_00003aic pdb_00003aic]
|  
+
| glucansucrase
|  
+
| ''Streptococcus mutans''
|  
+
| α-acarbose
|  
+
| '''Glu515'''
|  
+
| Asp477
|  
+
| <cite>Ito2011</cite>
 
|-
 
|-
 
| [[GH72]]
 
| [[GH72]]
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2w62 2w62]
+
| [{{PDBlink}}pdb_00002w62 pdb_00002w62]
| β-1,3-glucano- transferase
+
| β-1,3-glucanotransferase
 
| ''Saccharomyces cerevisiae'' S288C
 
| ''Saccharomyces cerevisiae'' S288C
 
| laminaripentaose
 
| laminaripentaose
| Glu176
+
| '''Glu176'''
 
| Glu275
 
| Glu275
 
| <cite>Hurtado-Gerrero2009</cite>
 
| <cite>Hurtado-Gerrero2009</cite>
 +
|-
 +
| [[GH73]]
 +
| none
 +
| lysozyme type
 +
| beta-{{Smallcaps|d}}
 +
| unknown
 +
| '''''syn'''''
 +
| [{{PDBlink}}pdb_00007pod pdb_00007pod]
 +
| peptidoglycan endo-β-1,4-''N''-acetylglucosaminidase
 +
| ''Streptococcus pneumoniae'' R6
 +
| NAG-NAM-NAG-NAM tetrasaccharide
 +
| '''Glu585'''
 +
| unknown
 +
| <cite>Martinez-Caballero2023</cite>
 
|-
 
|-
 
| [[GH74]]
 
| [[GH74]]
 
| none
 
| none
 
| 7-fold β-propeller
 
| 7-fold β-propeller
| beta
+
| beta-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}2ebs 2ebs]
+
| [{{PDBlink}}pdb_00002ebs pdb_00002ebs]
 
| cellobiohydrolase (OXG-RCBH)
 
| cellobiohydrolase (OXG-RCBH)
 
| ''Geotrichum sp.'' m128
 
| ''Geotrichum sp.'' m128
 
| xyloglucan heptasaccharide
 
| xyloglucan heptasaccharide
| Asp465
+
| '''Asp465'''
 
| Asp35
 
| Asp35
 
| <cite>Yaoi2007</cite>
 
| <cite>Yaoi2007</cite>
 +
|-
 +
| [[GH76]]
 +
| none
 +
| (α/α)<sub>6</sub>
 +
| alpha-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00005agd pdb_00005agd]
 +
| endo-α-1,6-mannanase
 +
| ''Bacillus circulans''
 +
| α-1,6-mannopentaose
 +
| '''Asp125'''
 +
| Asp124
 +
| <cite>Thompson2015</cite>
 
|-
 
|-
 
| [[GH77]]
 
| [[GH77]]
 
| H
 
| H
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}1esw 1esw]
+
| [{{PDBlink}}pdb_00002oww pdb_00002oww]
| amylomaltase
+
| 4-α-glucanotransferase
| ''Thermus aquaticus''
+
| ''Thermus thermofilus''
| acarbose
+
| acarbose + 4-deoxy-α-{{Smallcaps|d}}-glucose
| Asp395
+
| '''Glu340'''
 
| Asp293
 
| Asp293
| <cite>Przylas2000</cite>
+
| <cite>Barends2007</cite>
 +
|-
 +
| [[GH78]]
 +
| H
 +
| (α/α)<sub>6</sub>
 +
| alpha-{{Smallcaps|l}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00003w5n pdb_00003w5n]
 +
| α-{{Smallcaps|l}}-rhamnosidase
 +
| ''Streptomyces avermitilis''
 +
| {{Smallcaps|l}}-rhamnose
 +
| '''Glu636'''
 +
| Glu895
 +
| <cite>Fujimoto2013</cite>
 
|-
 
|-
 
| [[GH79]]
 
| [[GH79]]
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''predicted anti by clan''
+
| '''''anti'''''
| ''see e.g. at GH1''
+
| [{{PDBlink}}pdb_00005e9c pdb_00005e9c]
|  
+
|  heparanase
|  
+
| ''Homo sapiens''
|  
+
| heparin tetrasaccharide
|  
+
| '''Glu225'''
|  
+
| Glu343
|  
+
| <cite>Wu2015</cite>
 
|-
 
|-
 
| [[GH80]]
 
| [[GH80]]
 
| I
 
| I
 
| α + β
 
| α + β
| beta
+
| beta-{{Smallcaps|d}}
 
| inverting
 
| inverting
 
| ''predicted syn by clan''
 
| ''predicted syn by clan''
Line 868: Line 1,008:
 
|  
 
|  
 
|  
 
|  
|  
+
|
 +
|-
 +
| [[GH81]]
 +
| none
 +
| β-sandwich
 +
| beta-{{Smallcaps|d}}
 +
| inverting
 +
| '''''syn'''''
 +
| [{{PDBlink}}pdb_00005t4g pdb_00005t4g]
 +
| endo-β-1,3-glucanase
 +
| ''Bacillus halodurans'' C-125
 +
| laminarin
 +
| '''Asp466'''
 +
| Glu542
 +
| <cite>Pluvinage2017</cite>
 
|-
 
|-
 
| [[GH83]]
 
| [[GH83]]
 
| E
 
| E
 
| 6-fold β-propeller
 
| 6-fold β-propeller
| alpha
+
| alpha-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''predicted anti by clan''
+
| '''''anti'''''
| ''see e.g. at GH33''
+
| [{{PDBlink}}pdb_00001z4x pdb_00001z4x]
|  
+
| hemagglutinin-neuraminidase
|  
+
| Simian virus 5
|  
+
| α-2,3-sialyllactose
|  
+
| '''Asp187''' on flexible loop
|  
+
| Tyr523 (with Glu390)
|  
+
| <cite>Yuan2005</cite>
 
|-
 
|-
 
| [[GH84]]
 
| [[GH84]]
 
| none
 
| none
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2chn 2chn]
+
| [{{PDBlink}}pdb_00002chn pdb_00002chn]
| β-''N''-acetyl- glucosaminidase
+
| β-''N''-acetyl-glucosaminidase
| ''Bacteroides thetaiota- omicron'' VPI-5482
+
| ''Bacteroides thetaiotaomicron'' VPI-5482
 
| NAG-thiazoline
 
| NAG-thiazoline
| Glu242
+
| '''Glu242'''
 
| internal
 
| internal
 
| <cite>Dennis2006</cite>
 
| <cite>Dennis2006</cite>
Line 901: Line 1,055:
 
| K
 
| K
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2w92 2w92]
+
| [{{PDBlink}}pdb_00002w92 pdb_00002w92]
| endo-β-''N''-acetyl- glucosaminidase D
+
| endo-β-''N''-acetyl-glucosaminidase D
 
| ''Streptococcus pneumoniae'' TIGR4
 
| ''Streptococcus pneumoniae'' TIGR4
 
| NAG-thiazoline
 
| NAG-thiazoline
| Glu337
+
| '''Glu337'''
 
| internal
 
| internal
 
| <cite>Abbott2009</cite>
 
| <cite>Abbott2009</cite>
Line 915: Line 1,069:
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''predicted anti by clan''
+
| '''''anti'''''
| ''see e.g. at GH1''
+
| [{{PDBlink}}pdb_00004aw7 pdb_00004aw7]
|  
+
| β-porphyranase
|  
+
| ''Bacteroides plebeius''
|  
+
| porphyran fragment
|  
+
| '''Glu152'''
|  
+
| Glu279
|  
+
| <cite>Hehemann_1_2012</cite>
 
|-
 
|-
 
| [[GH89]]
 
| [[GH89]]
 
| none
 
| none
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2vcb 2vcb]
+
| [{{PDBlink}}pdb_00002vcb pdb_00002vcb]
| α-''N''-acetyl- glucosaminidase
+
| α-''N''-acetyl-glucosaminidase
 
| ''Clostridium perfringens''
 
| ''Clostridium perfringens''
 
| PUGNAc
 
| PUGNAc
| Glu483
+
| '''Glu483'''
 
| Glu601
 
| Glu601
 
| <cite>Ficko-Blean2008</cite>
 
| <cite>Ficko-Blean2008</cite>
Line 942: Line 1,096:
 
| [[GH92]]
 
| [[GH92]]
 
| none
 
| none
| (α/α)<sub>6</sub> + β-sandw.
+
| (α/α)<sub>6</sub> and β-sandwich
| alpha
+
| alpha-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2ww1 2ww1]
+
| [{{PDBlink}}pdb_00002ww1 pdb_00002ww1]
 
| α-1,2-mannosidase
 
| α-1,2-mannosidase
| ''Bacteroides thetaiota- omicron'' VPI-5482
+
| ''Bacteroides thetaiotaomicron'' VPI-5482
 
| thiomannobioside
 
| thiomannobioside
| Glu533
+
| '''Glu533'''
 
| Asp644 Asp642
 
| Asp644 Asp642
 
| <cite>Zhu2009</cite>
 
| <cite>Zhu2009</cite>
Line 957: Line 1,111:
 
| E
 
| E
 
| 6-fold β-propeller
 
| 6-fold β-propeller
| alpha
+
| alpha-{{Smallcaps|l}}
 
| retaining
 
| retaining
| ''predicted anti by clan''
+
| '''''anti'''''
| ''see e.g. at GH33''
+
| [{{PDBlink}}pdb_00003a72 pdb_00003a72]
|  
+
| exo-arabinanase
|  
+
| ''Penicillium chrysogenum''
|  
+
| arabinobiose
|  
+
| '''Glu246'''
|  
+
| Glu174
|  
+
| <cite>Sogabe2011</cite>
 
|-
 
|-
 
| [[GH94]]
 
| [[GH94]]
| none
+
| Q
 
| (α/α)<sub>6</sub>
 
| (α/α)<sub>6</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}1v7x 1v7x]
+
| [{{PDBlink}}pdb_00004zli pdb_00004zli]
| chitobiose phosphorylase
+
| cellobionic acid phosphorylase
| ''Vibrio proteolyticus''
+
| ''Saccharophagus degradans''
| GlcNAc
+
| 3-O-β-{{Smallcaps|d}}-glucopyranosyl-α-{{Smallcaps|d}}-glucopyranuronic acid
| Asp492
+
| '''Asp472'''
 
| phosphate
 
| phosphate
| <cite>Hidaka2004</cite>
+
| <cite>Nam2015</cite>
 
|-
 
|-
 
| [[GH95]]
 
| [[GH95]]
 
| none
 
| none
 
| (α/α)<sub>6</sub>
 
| (α/α)<sub>6</sub>
| alpha
+
| alpha-{{Smallcaps|l}}
 
| inverting
 
| inverting
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2ead 2ead]
+
| [{{PDBlink}}pdb_00002ead pdb_00002ead]
 
| α-1,2-{{Smallcaps|l}}-fucosidase
 
| α-1,2-{{Smallcaps|l}}-fucosidase
 
| ''Bifidobacterium bifidum''
 
| ''Bifidobacterium bifidum''
 
| Fuc-α-1,2-Gal
 
| Fuc-α-1,2-Gal
| Glu566
+
| '''Glu566'''
 
| Asn423 Asp766
 
| Asn423 Asp766
 
| <cite>Nagae2007</cite>
 
| <cite>Nagae2007</cite>
Line 999: Line 1,153:
 
| none
 
| none
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| retaining + inverting
 
| retaining + inverting
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}2zq0 2zq0]
+
| [{{PDBlink}}pdb_00002zq0 pdb_00002zq0]
 
| α-glucosidase
 
| α-glucosidase
| ''Bacteroides thetaiota- omicron'' VPI-5482
+
| ''Bacteroides thetaiotaomicron'' VPI-5482
 
| acarbose
 
| acarbose
| Glu532
+
| '''Glu532'''
 
| Glu508
 
| Glu508
 
| <cite>Kitamura2008</cite>
 
| <cite>Kitamura2008</cite>
 +
|-
 +
| [[GH98]]
 +
| none
 +
| (β/α)<sub>8</sub> and β-sandwich
 +
| beta-{{Smallcaps|d}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00002wmg pdb_00002wmg]
 +
| endo-β-1,4-galactosidase
 +
| ''Streptococcus pneumoniae''
 +
| A-Lewis<sup>Y</sup> pentasaccharide
 +
| '''Glu158'''
 +
| Asp251 Glu301
 +
| <cite>Higgins2009</cite>
 
|-
 
|-
 
| [[GH99]]
 
| [[GH99]]
 
| none
 
| none
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| alpha
+
| alpha-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}4ad4 4ad4]
+
| [{{PDBlink}}pdb_00004ad4 pdb_00004ad4]
 
| endo-α-mannosidase
 
| endo-α-mannosidase
 
| ''Bacteroides xylanisolvens''
 
| ''Bacteroides xylanisolvens''
 
| glucose-1,3-isofagomine and α-1,2- mannobiose
 
| glucose-1,3-isofagomine and α-1,2- mannobiose
| Glu336
+
| '''Glu336'''
 
| debated
 
| debated
 
| <cite>Thompson2012</cite>
 
| <cite>Thompson2012</cite>
 +
|-
 +
| [[GH100]]
 +
| G
 +
| (α/α)<sub>6</sub> core
 +
| beta-{{Smallcaps|d}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00005gop pdb_00005gop]
 +
| invertase
 +
| ''Anabaena (Nostoc) sp.'' pcc7120
 +
| sucrose
 +
| '''Asp188'''
 +
| Glu414
 +
| <cite>Xie2016</cite>
 +
|-
 +
| [[GH101]]
 +
| none
 +
| (β/α)<sub>8</sub>
 +
| alpha-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00005a56 pdb_00005a56]
 +
| endo-α-N-acetylgalactosaminidase
 +
| ''Streptococcus pneumoniae'' TIGR4
 +
| β-{{Smallcaps|d}}-Galp-(1-3)-α-{{Smallcaps|d}}-GalpNAc-(1)-methyl
 +
| '''Glu796''' +water
 +
| Asp764
 +
| <cite>Gregg2015</cite>
 
|-
 
|-
 
| [[GH102]]
 
| [[GH102]]
 
| none
 
| none
 
| double-ψ β-barrel
 
| double-ψ β-barrel
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''syn''
+
| '''''syn'''''
| [{{PDBlink}}2pi8 2pi8]
+
| [{{PDBlink}}pdb_00002pi8 pdb_00002pi8]
 
| lytic transglycosylase A
 
| lytic transglycosylase A
 
| ''Escherichia coli''
 
| ''Escherichia coli''
 
| chitohexaose
 
| chitohexaose
| Asp308
+
| '''Asp308'''
 
| none
 
| none
 
| <cite>van_Straaten2007</cite>
 
| <cite>van_Straaten2007</cite>
 +
|-
 +
| [[GH103]]
 +
| none
 +
| lysozyme type
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| '''''syn'''''
 +
| [{{PDBlink}}pdb_00001d0k pdb_00001d0k]
 +
| lytic transglycosylase SLT35
 +
| ''Escherichia coli''
 +
| murodipeptides
 +
| '''Glu162'''
 +
| internal
 +
| <cite>van_Asselt2000</cite>
 +
|-
 +
| [[GH106]]
 +
| none
 +
| (β/α)<sub>8</sub>
 +
| alpha-{{Smallcaps|l}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00005mwk pdb_00005mwk]
 +
| α-{{Smallcaps|l}}-rhamnosidase BT_0986
 +
| ''Bacteroides thetaiotaomicron''
 +
| pectin heptasaccharide
 +
| '''Glu461'''
 +
| Glu593 or Glu561
 +
| <cite>Ndeh2017</cite>
 +
|-
 +
| [[GH107]]
 +
| R
 +
| (β/α)<sub>8</sub>
 +
| alpha-{{Smallcaps|l}}
 +
| retaining
 +
| ''predicted syn by clan''
 +
| ''see at GH29''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH110]]
 +
| none
 +
| parallel β-helix
 +
| alpha-{{Smallcaps|d}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00007jwf pdb_00007jwf]
 +
| α-1,3-galactosidase
 +
| ''Pseudoalteromonas distincta''
 +
| Gal-α1,3-Gal
 +
| '''Asp344'''
 +
| Asp321 Asp345
 +
| <cite>McGuire2020</cite>
 
|-
 
|-
 
| [[GH113]]
 
| [[GH113]]
 
| A
 
| A
 
| (β/α)<sub>8</sub>
 
| (β/α)<sub>8</sub>
| beta
+
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''anti''
+
| '''''anti'''''
| [{{PDBlink}}4cd8 4cd8]
+
| [{{PDBlink}}pdb_00004cd8 pdb_00004cd8]
| &beta;-mannanase
+
| β-mannanase
 
| ''Alicyclobacillus acidocaldarius''
 
| ''Alicyclobacillus acidocaldarius''
 
| mannobioimidazole
 
| mannobioimidazole
| Glu151
+
| '''Glu151'''
 
| Glu231
 
| Glu231
 
| <cite>Williams2014</cite>
 
| <cite>Williams2014</cite>
 +
|-
 +
| [[GH116]]
 +
| O
 +
| (α/α)<sub>6</sub> and β-sandwich
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| '''''perpendicular''''' (anomaly)
 +
| [{{PDBlink}}pdb_00008i5u pdb_00008i5u]
 +
| β-glucosidase
 +
| ''Thermoanaerobacterium xylanolyticum'' LX-11
 +
| laminaribiose
 +
| '''Asp593'''
 +
| Glu441
 +
| <cite>Pengthaisong2023</cite>
 +
|-
 +
| [[GH117]]
 +
| F
 +
| 5-fold β-propeller
 +
| alpha-{{Smallcaps|l}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00004ak7 pdb_00004ak7]
 +
| α-1,3-3,6-anhydro-{{Smallcaps|l}}-galactosidase
 +
| ''Bacteroides plebeius''
 +
| neoagarobiose
 +
| '''His302''' (relay from Asp320)
 +
| Asp90
 +
| <cite>Hehemann_2_2012</cite>
 +
|-
 +
| [[GH119]]
 +
| T
 +
| (β/α)<sub>7</sub>
 +
| alpha-{{Smallcaps|d}}
 +
| retaining
 +
| ''predicted anti by clan''
 +
| ''see at GH57''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH120]]
 +
| none
 +
| parallel β-helix and β-sandwich
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00003vsv pdb_00003vsv]
 +
| β-xylosidase XylC
 +
| ''Thermoanaerobacterium saccharolyticum'' JW/SL-YS485
 +
| {{Smallcaps|d}}-xylose
 +
| '''Glu405'''
 +
| Asp382
 +
| <cite>Huang2012</cite>
 +
|-
 +
| [[GH123]]
 +
| none
 +
| (β/α)<sub>8</sub> and β-sandwich
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00005fr0 pdb_00005fr0]
 +
| exo-β-N-acetyl-galactosaminidase
 +
| ''Clostridium perfringens''
 +
| ''N''-difluoroacetyl-{{Smallcaps|d}}-galactosamine
 +
| '''Glu345'''
 +
| internal
 +
| <cite>Noach2016</cite>
 +
|-
 +
| [[GH124]]
 +
| none
 +
| lysozyme type
 +
| beta-{{Smallcaps|d}}
 +
| inverting
 +
| '''''syn'''''
 +
| [{{PDBlink}}pdb_00006g1i pdb_00006g1i]
 +
| endo-β-1,4-glucanase
 +
| ''Acetivibrio thermocellus'' ATCC 27405
 +
| fructosylated cellopentaose
 +
| '''Glu203'''
 +
| unknown
 +
| <cite>Urresti2018</cite>
 +
|-
 +
| [[GH125]]
 +
| L
 +
| (α/α)<sub>6</sub>
 +
| alpha-{{Smallcaps|d}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00005m7y pdb_00005m7y]
 +
| exo-α-1,6-mannosidase
 +
| ''Clostridium perfringens''
 +
| 1,6-α-mannotriose
 +
| '''Asp220'''
 +
| Glu393
 +
| <cite>Alonso-Gil2016</cite>
 +
|-
 +
| [[GH127]]
 +
| P
 +
| (α/α)<sub>6</sub> and β-sandwich
 +
| beta-{{Smallcaps|l}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00003wrg pdb_00003wrg]
 +
| β-{{Smallcaps|l}}-arabinofuranosidase
 +
| ''Bifidobacterium longum''
 +
| {{Smallcaps|l}}-arabinose
 +
| '''Glu322'''
 +
| Cys417
 +
| <cite>Huang2014</cite>
 +
|-
 +
| [[GH128]]
 +
| A
 +
| (β/α)<sub>8</sub>
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00006ufl pdb_00006ufl]
 +
| β-1,3-glucanase
 +
| ''Amycolatopsis mediterranei''
 +
| laminarihexaose
 +
| '''Glu102'''
 +
| Glu199
 +
| <cite>Santos2020</cite>
 +
|-
 +
| [[GH129]]
 +
| none
 +
| (β/α)<sub>8</sub>
 +
| alpha-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00005wzn pdb_00005wzn]
 +
| exo-α-''N''-acetylgalactosaminidase (NagBb)
 +
| ''Bifidobacterium bifidum'' JCM 1254
 +
| GalNAc
 +
| '''Glu478'''
 +
| Asp435
 +
| <cite>Sato2017</cite>
 +
|-
 +
| [[GH130]]
 +
| none
 +
| 5-fold β-propeller
 +
| beta-{{Smallcaps|d}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00005b0s pdb_00005b0s]
 +
| β-1,2-mannobiose phosphorylase
 +
| ''Listeria innocua''
 +
| β-1,2-mannotriose
 +
| '''Asp141''' relay
 +
| phosphate
 +
| <cite>Tsuda2015</cite>
 +
|-
 +
| [[GH133]]
 +
| none
 +
| (α/α)<sub>6</sub>
 +
| alpha-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00005d0f pdb_00005d0f]
 +
| glycogen-debranching enzyme
 +
| ''Nakaseomyces glabratus'' CBS 138
 +
| maltopentaose
 +
| '''Glu564'''
 +
| Asp535
 +
| <cite>Zhai2016</cite>
 
|-
 
|-
 
|  [[GH134]]
 
|  [[GH134]]
 
| none
 
| none
 
| β + α
 
| β + α
| beta
+
| beta-{{Smallcaps|d}}
 
| inverting
 
| inverting
| ''anti''
+
| '''''syn'''''
| [{{PDBlink}}5jug 5jug]
+
| [{{PDBlink}}pdb_00005jug pdb_00005jug]
| &beta;-mannanase
+
| β-mannanase
 
| ''Streptomyces sp.''
 
| ''Streptomyces sp.''
 
| mannopentaose
 
| mannopentaose
| Glu45
+
| '''Glu45'''
 
| Asp57
 
| Asp57
 
| <cite>Jin2016</cite>
 
| <cite>Jin2016</cite>
 +
|-
 +
|  [[GH136]]
 +
| none
 +
| β-helix
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| '''''syn'''''
 +
| [{{PDBlink}}pdb_00005gqf pdb_00005gqf]
 +
| lacto-N-biosidase
 +
| ''Bifidobacterium longum''
 +
| lacto-N-biose
 +
| '''Asp411'''
 +
| Asp418
 +
| <cite>Yamada2017</cite>
 +
|-
 +
|  [[GH137]]
 +
| none
 +
| 5-fold β-propeller
 +
| beta-{{Smallcaps|l}}
 +
| unknown
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00005mui pdb_00005mui]
 +
| β-{{Smallcaps|l}}-arabinofuranosidase BT_0996
 +
| ''Bacteroides thetaiotaomicron''
 +
| pectin oligosaccharide
 +
| '''Glu240'''
 +
| Glu159
 +
| <cite>Ndeh2017</cite>
 +
|-
 +
|  [[GH138]]
 +
| none
 +
| (β/α)<sub>8</sub>
 +
| alpha-{{Smallcaps|d}}
 +
| retaining
 +
| '''''syn'''''
 +
| [{{PDBlink}}pdb_00006hzg pdb_00006hzg]
 +
| α-1,2-{{Smallcaps|d}}-galacturonidase
 +
| ''Bacteroides paurosaccharolyticus''
 +
| alpha-{{Smallcaps|d}}-galactopyranuronic
 +
| '''Glu294'''
 +
| Glu361
 +
| <cite>Labourel2019</cite>
 +
|-
 +
| [[GH140]]
 +
| A
 +
| (β/α)<sub>8</sub>
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| ''predicted anti by clan''
 +
| ''see at e.g. GH1''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH144]]
 +
| S
 +
| (α/α)<sub>8</sub>
 +
| beta-{{Smallcaps|d}}
 +
| inverting
 +
| '''''syn'''''
 +
| [{{PDBlink}}pdb_00008xul pdb_00008xul]
 +
| beta-1,2-glucanase
 +
| ''Xanthomonas campestris''
 +
| beta-1,2-glucoheptasaccharide
 +
| '''Glu239'''
 +
| unknown
 +
| <cite>Nakajima2024</cite>
 +
|-
 +
| [[GH146]]
 +
| P
 +
| (α/α)<sub>6</sub> and β-sandwich
 +
| beta-{{Smallcaps|l}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00005opj pdb_00005opj]
 +
| β-{{Smallcaps|l}}-arabinofuranosidase
 +
| ''Bacteroides thetaiotaomicron''
 +
| {{Smallcaps|l}}-arabinose
 +
| '''Glu320'''
 +
| Cys416
 +
| <cite>Luis2018</cite>
 +
|-
 +
| [[GH147]]
 +
| A
 +
| (β/α)<sub>8</sub>
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| ''predicted anti by clan''
 +
| ''see at e.g. GH1''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH148]]
 +
| A
 +
| (β/α)<sub>8</sub>
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| ''predicted anti by clan''
 +
| ''see at e.g. GH1''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH149]]
 +
| Q
 +
| (α/α)<sub>6</sub>
 +
| beta-{{Smallcaps|d}}
 +
| inverting
 +
| ''predicted syn by clan''
 +
| ''see at GH94''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH156]]
 +
| none
 +
| (β/α)<sub>8</sub>
 +
| alpha-{{Smallcaps|d}}
 +
| inverting
 +
| '''''syn'''''
 +
| [{{PDBlink}}pdb_00006s0e pdb_00006s0e]
 +
| exo-α-sialidase
 +
| uncultured bacterium pG7
 +
| N-acetyl-2,3-dehydro-2-deoxyneuraminic acid
 +
| '''His134''' (relay from Asp132)
 +
| Asp14
 +
| <cite>Bule2019</cite>
 +
|-
 +
| [[GH157]]
 +
| A
 +
| (β/α)<sub>8</sub>
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| ''predicted anti by clan''
 +
| ''see at e.g. GH1''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH158]]
 +
| A
 +
| (β/α)<sub>8</sub>
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| ''predicted anti by clan''
 +
| ''see at e.g. GH1''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH161]]
 +
| Q
 +
| (α/α)<sub>6</sub>
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| ''predicted syn by clan''
 +
| ''see at GH94''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH162]]
 +
| S
 +
| (α/α)<sub>6</sub>
 +
| beta-{{Smallcaps|d}}
 +
| inverting
 +
| '''''syn'''''
 +
| [{{PDBlink}}pdb_00006imw pdb_00006imw]
 +
| endo-β-1,2-glucanase
 +
| ''Talaromyces funiculosus''
 +
| beta-1,2-glucan
 +
| '''Glu262''' via C3-OH of glc at subs. +2
 +
| Asp446
 +
| <cite>Tanaka2019</cite>
 +
|-
 +
| [[GH164]]
 +
| A
 +
| (β/α)<sub>8</sub>
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00006t75 pdb_00006t75]
 +
| β-mannosidase
 +
| ''Bacteroides salyersiae''
 +
| 2-deoxy-2-F-mannosyl
 +
| '''Glu160'''
 +
| Glu297
 +
| <cite>Armstrong2020</cite>
 +
|-
 +
| [[GH167]]
 +
| A
 +
| (β/α)<sub>8</sub>
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| ''predicted anti by clan''
 +
| ''see at e.g. GH1''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH168]]
 +
| none
 +
| (β/α)<sub>8</sub>
 +
| alpha-{{Smallcaps|l}}
 +
| retaining
 +
| '''''syn'''''
 +
| [{{PDBlink}}pdb_00008ya7 pdb_00008ya7]
 +
| endo-α-1,3-{{Smallcaps|l}}-fucanase (Fun168A)
 +
| ''Wenyingzhuangia fucanilytica'' CZ1127
 +
| sulfated fucotetraose
 +
| '''Glu264'''
 +
| Asp206
 +
| <cite>Chen2024</cite>
 +
|-
 +
| [[GH169]]
 +
| A
 +
| (β/α)<sub>8</sub>
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| ''predicted anti by clan''
 +
| ''see at e.g. GH1''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH172]]
 +
| none
 +
| β-jelly roll
 +
| alpha-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00007v1w pdb_00007v1w]
 +
| difructose-anhydride synthase
 +
| ''Bifidobacterium dentum''
 +
| beta-{{Smallcaps|d}}-arabinofuranose
 +
| '''Glu270'''
 +
| Glu291
 +
| <cite>Kashima2021</cite>
 +
|-
 +
| [[GH173]]
 +
| A
 +
| (β/α)<sub>8</sub>
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| ''predicted anti by clan''
 +
| ''see at e.g. GH1''
 
|  
 
|  
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH178]]
 +
| L
 +
| (α/α)<sub>6</sub>
 +
| alpha-{{Smallcaps|d}}
 +
| inverting
 +
| ''predicted anti by clan''
 +
| ''see at e.g. GH15''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH181]]
 +
| E
 +
| 6-fold β-propeller
 +
| alpha-{{Smallcaps|d}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00008axi pdb_00008axi]
 +
| exo-α-sialidase
 +
| ''Akkermansia muciniphila''
 +
| 2-deoxy-2,3-dehydro-''N''-acetyl-neuraminic acid + T-antigen disaccharide
 +
| '''Asp345'''
 +
| Glu218
 +
| <cite>Shuoker2023</cite>
 +
|-
 +
| [[GH183]]
 +
| none
 +
| 5-bladed β-propeller
 +
| alpha-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00008ic1 pdb_00008ic1]
 +
| endo-α-1,5-{{Smallcaps|d}}-arabinofuranosidase
 +
| ''Microbacterium arabinogalactanolyticum'' JCM 9171
 +
| α-{{Smallcaps|d}}-Araf-(1,5)-α-{{Smallcaps|d}}-Araf-(1,5)-α-{{Smallcaps|d}}-Araf-(1,5)-α-{{Smallcaps|d}}-Araf
 +
| '''Asp51'''
 +
| Asp33
 +
| <cite>Shimokawa2023</cite>
 +
|-
 +
| [[GH186]]
 +
| none
 +
| β-sandwich
 +
| beta-{{Smallcaps|d}}
 +
| inverting
 +
| '''''syn'''''
 +
| [{{PDBlink}}pdb_00008ip1 pdb_00008ip1]
 +
| β-1,2-glucanase
 +
| ''Escherechia coli''
 +
| β-1,2-glucan
 +
| '''Asp388'''
 +
| Asp300 + 3 waters
 +
| <cite>Motouchi2023</cite>
 +
|-
 +
| [http://www.cazy.org/GH0.html n.c.*]
 +
| none
 +
| parallel β-helix
 +
| alpha-{{Smallcaps|d}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}pdb_00002vjj pdb_00002vjj]
 +
| endo-α-N-acetylglucosaminidase
 +
| Bacteriophage HK620
 +
| O18A1 O-antigen hexasaccharide
 +
| '''Asp339'''
 +
| Glu372
 +
| <cite>Barbirz2008</cite>
 
|}
 
|}
 +
<nowiki>*</nowiki> n.c.: Found among the collection of [http://www.cazy.org/GH0.html non-classified GH sequences in the CAZy Database].
  
 
== References ==
 
== References ==
  
 
<biblio>
 
<biblio>
# HeightmanVasella1999 Heightman, T.D. and Vasella, A.T. (1999) Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. Angewandte Chemie-International Edition 38(6), 750-770. [http://www3.interscience.wiley.com/journal/55000581/abstract Article online].
+
# HeightmanVasella1999 Heightman TD and Vasella AT. ''Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases.'' Angew Chem Int Ed. 1999 38(6):750-770. [http://www3.interscience.wiley.com/journal/55000581/abstract Article online].
 
# Nerinckx2005 pmid=15642336
 
# Nerinckx2005 pmid=15642336
 
 
 
# Wu2012 pmid=23137336
 
# Wu2012 pmid=23137336
 
+
# Perez1978 Pérez S and Marchessault RH. ''The exo-anomeric effect: experimental evidence from crystal structures.'' Carbohydr res. 1978 65:114-120. [http://dx.doi.org/10.1016/S0008-6215(00)84218-4 DOI:10.1016/S0008-6215(00)84218-4]
# Perez1978 Pérez S and Marchessault RH (1978) The exo-anomeric effect: experimental evidence from crystal structures. Carbohydr res 65, 114-120.
+
# Cramer1997 Cramer CJ, Truhlar DG, and French AD. ''Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution.'' Carbohydr res. 1997 298:1-14. [http://dx.doi.org/10.1016/S0008-6215(96)00297-2 DOI:10.1016/S0008-6215(96)00297-2]
 
 
# Cramer1997 Cramer CJ, Truhlar DG and French AD (1997) Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution. Carbohydr res 298, 1-14.
 
 
 
 
# Johnson2009 pmid=19733839
 
# Johnson2009 pmid=19733839
 +
# Alonso2016 pmid=26889578
 
# Gloster2006 pmid=17002288
 
# Gloster2006 pmid=17002288
 
# van_Bueren2009 pmid=18976664
 
# van_Bueren2009 pmid=18976664
 
# Hrmova2001 pmid=11709165
 
# Hrmova2001 pmid=11709165
 +
# Rajan2004 pmid=15341727
 
# Varrot2003 pmid=12595701
 
# Varrot2003 pmid=12595701
 
# Zhou1999 pmid=10508787
 
# Zhou1999 pmid=10508787
 
# Sulzenbacher1999 pmid=10200171
 
# Sulzenbacher1999 pmid=10200171
# Brumshtein2007 pmid=17666401
+
# Urbanikova2011 pmid=21501386
 
# Guerin2002 pmid=11884144
 
# Guerin2002 pmid=11884144
 
# Schubot2004 pmid=14756552
 
# Schubot2004 pmid=14756552
 
# Suzuki2009 pmid=19279191
 
# Suzuki2009 pmid=19279191
# Sidhu1999 pmid=10220321
+
# Wan2014 pmid=24419374
 
# Sandgren2004 pmid=15364577
 
# Sandgren2004 pmid=15364577
 
# Uitdehaag1999 pmid=10331869
 
# Uitdehaag1999 pmid=10331869
 
# Miyake2003 pmid=12741813
 
# Miyake2003 pmid=12741813
# Aleshin1996 pmid=8679589
+
# Harris1993 pmid=8431441
 
# Allouch2004 pmid=15062085
 
# Allouch2004 pmid=15062085
 +
# Wojtkowiak2013 pmid=23275163
 
# Papanikolau2001 pmid=11560481
 
# Papanikolau2001 pmid=11560481
 
# Prag2000 pmid=10884356
 
# Prag2000 pmid=10884356
Line 1,103: Line 1,869:
 
# Karlsen1996 pmid=15299731
 
# Karlsen1996 pmid=15299731
 
# Baldwin1993 pmid=8259514
 
# Baldwin1993 pmid=8259514
# Ducros2002 pmid=12203498
+
# Cartmell2008 pmid=18799462
# Garman2002 pmid=12005440
+
# Fernandez-Leiro2010 pmid=20592022
 
# Abbott2007 pmid=17397864
 
# Abbott2007 pmid=17397864
# Sulzenbacher2004 pmid=14715651
+
# Sakurama2012 pmid=22451675
 
# Sim2008 pmid=18036614
 
# Sim2008 pmid=18036614
 
# Verhaest2007 pmid=17335500
 
# Verhaest2007 pmid=17335500
 
# Amaya2004 pmid=15130470
 
# Amaya2004 pmid=15130470
# Varghese1992 pmid=1438172
+
# Zhu2012 pmid=23015718
# Rojas2004 pmid=15491613
+
# Maksimainen2011 pmid=21130883
 +
# Merceron2012 pmid=23012371
 
# Gibson2007 pmid=17455176
 
# Gibson2007 pmid=17455176
# Numao2003 pmid=12960159
+
# Shah2008 pmid=18599462
# Yang2004 pmid=14659747
+
# Czjzek2005 pmid=16212978
# Hidaka2002 pmid=12215416
+
# Godoy2016 pmid=27685756
 +
# Fujimoto2010 pmid=20739278
 
# Kitago2007 pmid=17905739
 
# Kitago2007 pmid=17905739
 
# Davies1996 pmid=15299721
 
# Davies1996 pmid=15299721
 +
# Lyu2014 pmid=24766439
 
# Karaveg2005 pmid=15713668
 
# Karaveg2005 pmid=15713668
 
# Nerinckx2008 pmid=18619586
 
# Nerinckx2008 pmid=18619586
 +
# Pluvinage2013 pmid=23921382
 +
# Yuan2005 pmid=15893670
 
# Hoevel2003 pmid=14517232
 
# Hoevel2003 pmid=14517232
 +
# Espina2014 pmid=24816105
 +
# Le_Nours2009 pmid=19089956
 
# Miyanaga2004 pmid=15292273
 
# Miyanaga2004 pmid=15292273
# Ishida2009 pmid=19193645
+
# Bianchetti2015 pmid=25752603
# Markovic-Housley2000 Marković-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Müller U, Schirmer T. ''Crystal structure of hyaluronidase, a major allergen of bee venom.'' Structure. 2000 Oct 15;8(10):1025-35.  //''Note: Due to a problem with PubMed data, this reference is not automatically formatted.  Please see these links out:'' [http://dx.doi.org/10.1016/S0969-2126(00)00511-6 DOI:10.1016/S0969-2126(00)00511-6] [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11080624  PMID:11080624]
+
# Markovic-Housley2000 pmid=11080624
 
# Imamura2003 pmid=12618437
 
# Imamura2003 pmid=12618437
# Nurizzo2002 pmid=11937059
+
# Hill2013 pmid=24297913
 +
# Maehara2014 pmid=24482228
 +
# Miyazaki2016 pmid=27688023
 +
# Touhara2014 pmid=24828502
 +
# Suzuki2016 pmid=26494689
 +
# Golan2004 pmid=14573597
 
# Meng2003 pmid=14517548
 
# Meng2003 pmid=14517548
 +
# Ito2011 pmid=21354427
 
# Hurtado-Gerrero2009 pmid=19097997
 
# Hurtado-Gerrero2009 pmid=19097997
 
# Yaoi2007 pmid=17498741
 
# Yaoi2007 pmid=17498741
# Przylas2000 pmid=11082203
+
# Martinez-Caballero2023 pmid=37418323
 +
# Thompson2015 pmid=25772148
 +
# Barends2007 pmid=17420245
 +
# Fujimoto2013 pmid=23486481
 +
# Wu2015 pmid=26575439
 +
# Pluvinage2017 pmid=28781080
 
# Dennis2006 pmid=16565725
 
# Dennis2006 pmid=16565725
 
# Abbott2009 pmid=19181667
 
# Abbott2009 pmid=19181667
 +
# Hehemann_1_2012 pmid=23150581
 
# Ficko-Blean2008 pmid=18443291
 
# Ficko-Blean2008 pmid=18443291
# Zhu2009 Zhu et al. (2010) Nature Chemical Biology in the press; [http://dx.doi.org/10.1038/nchembio.278 DOI: 10.1038/nchembio.278] [http://www.nature.com/nchembio/journal/vaop/ncurrent/abs/nchembio.278.html ''direct link''].
+
# Zhu2009 pmid=20081828
# Hidaka2004 pmid=15274915
+
# Sogabe2011 pmid=21543843
 +
# Nam2015 pmid=26041776
 
# Nagae2007 pmid=17459873
 
# Nagae2007 pmid=17459873
 
# Kitamura2008 pmid=18981178
 
# Kitamura2008 pmid=18981178
 +
# Higgins2009 pmid=19608744
 
# van_Straaten2007 pmid=17502382
 
# van_Straaten2007 pmid=17502382
# Jin2016 Jin Y, Petricevic M, John A, Raich L, Jenkins H, Portela De Souza L, Cuskin F, Gilbert HJ, Rovira C, Goddard-Borger ED, Williams SJ, Davies GJ. ''A β-Mannanase with a Lysozyme-like Fold and a Novel Molecular Catalytic Mechanism.'' ACS Cent. Sci. 2016 Nov [http://dx.doi.org/10.1021/acscentsci.6b00232 DOI:10.1021/acscentsci.6b00232]
+
# van_Asselt2000 pmid=10684641
 
+
# Ndeh2017 pmid=28329766
# Thompson2012 pmid=22219371  
+
# Labourel2019 pmid=30877196
 +
# Nakajima2024 Nakajima M. et al. ''Extensive distribution of β-1,2-glucanases: finding of new glycoside hydrolase families of β-1,2-glucanases.'' BioRxiv preprint 2024. https://doi.org/10.1101/2024.02.06.578578
 +
# Luis2018 pmid=29255254
 +
# Bule2019 pmid=31645552
 +
# Jin2016 Jin Y, Petricevic M, John A, Raich L, Jenkins H, Portela De Souza L, Cuskin F, Gilbert HJ, Rovira C, Goddard-Borger ED, Williams SJ, and Davies GJ. ''A β-Mannanase with a Lysozyme-like Fold and a Novel Molecular Catalytic Mechanism.'' ACS Cent Sci. 2016 Nov [http://dx.doi.org/10.1021/acscentsci.6b00232 DOI:10.1021/acscentsci.6b00232]
 +
# Yamada2017 pmid=28392148
 +
# Ohnuma2014 pmid=24582745
 +
# Thompson2012 pmid=22219371
 +
# Xie2016 pmid=27777307
 +
# Gregg2015 pmid=26304114
 
# Williams2014 pmid=24339341
 
# Williams2014 pmid=24339341
 +
# Pengthaisong2023 pmid=37180965
 +
# Hehemann_2_2012 pmid=22393053
 +
# Huang2012 pmid=22992047
 +
# Noach2016 pmid=27038508
 +
# Urresti2018 pmid=30084399
 +
# Alonso-Gil2016 pmid=28026180
 +
# Huang2014 Huang CH, Zhu Z, Cheng YS, Chan HC, Ko TP, Chen CC, Wang I, Ho MR, Hsu ST, Zeng YF, Huang YN, Liu JR, Guo RT. ''Structure and Catalytic Mechanism of a Glycoside Hydrolase Family-127 β-L-Arabinofuranosidase (HypBA1).'' J Bioprocess Biotech. 2014 4:171 [http://dx.doi.org/10.4172/2155-9821.1000171 DOI:10.4172/2155-9821.1000171]
 +
# Tsuda2015 pmid=26632508
 +
# Zhai2016 pmid=27088557
 +
# Barbirz2008 pmid=18547389
 +
# Tanaka2019 pmid=30926603
 +
# Armstrong2020 pmid=31871050
 +
# Chen2024 pmid=38795894
 +
# Santos2020 pmid=32451508
 +
# Sato2017 pmid=28546425
 +
# Kashima2021 pmid=34688653
 +
# McGuire2020 pmid=33127644
 +
# Shuoker2023 pmid=37005422
 +
# Shimokawa2023 pmid=37726269
 +
# Motouchi2023 pmid=37735577
 
</biblio>
 
</biblio>
 
 
[[Category:Definitions and explanations]]
 
[[Category:Definitions and explanations]]

Latest revision as of 10:18, 8 October 2025

Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Overview

This page provides a table that summarizes the spatial positioning of the catalytic general acid residue in the active sites of glycoside hydrolases, relative to the substrate. The table below updates those found in the seminal paper on this concept by Heightman and Vasella [1], and a following paper by Nerinckx et al. [2].

Background

The "not from above, but from the side" concept of semi-lateral glycosidic oxygen protonation by glycoside hydrolases was introduced by Heightman and Vasella [1]. It was originally only described for beta-equatorial glycoside hydrolases, but appears to be equally applicable to enzymes acting on an alpha-axial glycosidic bond [2]. When dividing subsite -1 into half-spaces by a plane defined by the glycosidic oxygen and C1' and H1' of the –1 glycoside, many ligand-complexed structures reveal that the proton donor is positioned either in the syn half-space (near the ring-oxygen of the –1 glycoside), or in the anti half-space (on the opposite side of the ring-oxygen). Members of the same GH family appear to share a common syn or anti protonator arrangement and further, this specificity appears to be preserved within Clans of families. This page's compilation of subsite -1 occupied complexes shows that about 70% of all GH families are anti protonators.

Closer inspection of crystal structures of –1/+1 subsite-spanning substrates, or substrate-analogue ligands, in complex with enzymes reveals a further intriguing corollary [2, 3]. In substrate-bound complexes with anti protonating GH enzymes, the scissile anomeric bond (often studied using the thio-analogue) shows a dihedral angle φ (O5'-C1'-[O,S]x-Cx) that is in the lowest-energy synclinal (gauche) conformation. The rationale for this is that a minus synclinal dihedral angle φ for an equatorial glycosidic bond, or plus synclinal for an axial glycosidic bond [4], allows for hyperconjugative overlap of the C1'-O5' antibonding orbital with an antiperiplanar-oriented lone pair orbital lobe of the glycosidic oxygen, thereby creating partial double bond character and stabilization of the glycosidic bond by 4–5 kcal/mol; this ground-state stabilizing phenomenon is known as the ‘exo-anomeric effect’ [5, 6, 7]. Anti protonation occurs on the glycosidic oxygen’s antiperiplanar lone pair, thereby removing the stabilizing exo-anomeric effect. This suggests that anti protonation is an enzymic approach for lowering the activation barrier leading to the transition state (Figure 1 centre).

Syn protonating glycoside hydrolases apparently make use of a different approach [2, 3]. In many –1/+1 subsite-spanning ligand complexes, the dihedral angle φ of the scissile anomeric bond has been rotated away from its lowest-energy synclinal position: clockwise to minus-anticlinal or antiperiplanar for beta-equatorial; counterclockwise to plus-anticlinal or antiperiplanar for alpha-axial anomeric bonds. This removes the hyperconjugative overlap and thus also the stabilizing exo-anomeric effect. And because of this rotation, a lone pair of the glycosidic oxygen is directed into the syn half-space, allowing it to be protonated by the syn-positioned proton donor (Figure 1 right).

Figure 1. Newman projections, with the glycosidic oxygen as proximal atom and the anomeric carbon as distal atom, showing anti (centre) versus syn (right) semi-lateral protonation in beta-equatorial (top) and alpha-axial (bottom) glycoside hydrolases. The indicated φ is the dihedral angle for O5'-C1'-O4-C4.

Table of syn/anti protonation examples

This table contains only one example per GH family of a ligand-complexed protein structure where the syn or anti positioning of the proton donor can be clearly observed; other examples may be available on a family-by-family basis. The reader is thus advised to consult the CAZy database for a current, comprehensive list of CAZyme structures. Where available, the selected examples are Michaelis-type complexes with the ligand spanning the -1/+1 subsites, since these have an intact glycosidic or thioglycosidic bond, or are N-analogs of the substrate (e.g. acarbose). In some examples, the proton donor has been mutated (e.g., to the corresponding amide or to an alanine), and in those cases one may wish to look at a superposition of the given PDB example with the structure of the native enzyme. If a Michaelis-type complex is not yet available, the second and third example choices, respectively, are trapped glycosyl-enzyme intermediates and product complexes where subsite -1 is occupied.

Please also be aware that this is a large table with many data. Please contact the page Author or Responsible Curator with corrections.

Table

This table can be re-sorted by clicking on the icons in the header (javascript must be turned on in your browser). To reset the page to be sorted by GH family, click the View tab at the very top of the page.

Family Clan Structure fold Anomeric specificity Mechanism Syn/anti protonator Example PDB ID Enzyme Organism Ligand General acid Nucleophile or General base Reference
GH1 A (β/α)8 beta-d retaining anti pdb_00002cer β-glycosidase S Sulfolobus solfataricus P2 phenethyl glucoimidazole Glu206 Glu387 [8]
GH2 A (β/α)8 beta-d / alpha-l retaining anti pdb_00002vzu exo-β-glucosaminidase Amicolatopsis orientalis PNP-β-d-glucosamine Glu469 Glu541 [9]
GH3 none (β/α)8 beta-d / alpha-l retaining anti pdb_00001iex exo-1,3-1,4-glucanase Hordeum vulgare thiocellobiose Glu491 Asp285 [10]
GH4 none Rossmann + α6/β3 + β3/α4 beta-d retaining anti pdb_00001u8x 6-P-α-glucosidase Bacillus subtilis alpha-d-glucose-6-phosphate Asp172 not applicable [11]
GH5 A (β/α)8 beta-d retaining anti pdb_00001h2j endo-β-1,4-glucanase Bacillus agaradhaerens 2',4'-DNP-2-F-cellobioside Glu129 Glu228 [12]
GH6 none (β/α)8 beta-d inverting syn pdb_00001qjw cellobiohydrolase 2 Hypocrea jecorina (Glc)2-S-(Glc)2 Asp221 debated [13]
GH7 B β-jelly roll beta-d retaining syn pdb_00001ovw endo-1,4-glucanase Fusarium oxysporum thio-(Glc)5 Glu202 Glu197 [14]
GH8 M (α/α)6 beta-d inverting anti pdb_00001kwf endo-1,4-glucanase Clostridium thermocellum cellopentaose Glu95 Asp278 [15]
GH9 none (α/α)6 beta-d inverting syn pdb_00001rq5 cellobiohydrolase Clostridium thermocellum cellotetraose Glu795 Asp383 [16]
GH10 A (β/α)8 beta-d retaining anti pdb_00002d24 β-1,4-xylanase Streptomyces olivaceoviridis E-86 xylopentaose Glu128 Glu236 [17]
GH11 C β-jelly roll beta-d retaining syn pdb_00004hk8 endo-β-1,4-xylanase Hypocrea jecorina xylohexaose Glu177 Glu86 [18]
GH12 C β-jelly roll beta-d retaining syn pdb_00001w2u endoglucanase Humicola grisea thiocellotetraose Glu205 Glu120 [19]
GH13 H (β/α)8 alpha-d retaining anti pdb_00001cxk β-cyclodextrin glucanotransferase Bacillus circulans maltononaose Glu257 Asp229 [20]
GH14 none (β/α)8 alpha-d inverting syn pdb_00001itc β-amylase Bacillus cereus maltopentaose Glu172 Glu367 [21]
GH15 L (α/α)6 alpha-d inverting anti pdb_00001dog glucoamylase Aspergillus awamori 1-deoxynojirimycin Glu179 Glu400 [22]
GH16 B β-jelly roll beta-d retaining syn pdb_00001urx β-agarase A Zobellia galactanivorans oligoagarose Glu152 Glu147 [23]
GH17 A (β/α)8 beta-d retaining anti pdb_00004gzj endo-β-1,3-glucanase Solanum tuberosum laminaratriose + laminarabiose Glu118 Glu259 [24]
GH18 K (β/α)8 beta-d retaining anti pdb_00001ffr chitinase A Serratia marcescens (NAG)6 Glu315 internal [25]
GH19 none lysozyme type beta-d inverting syn pdb_00003wh1 chitinase Bryum coronatum (GlcNAc)4 Glu61 Glu70 [26]
GH20 K (β/α)8 beta-d retaining anti pdb_00001c7s chitobiase Serratia marcescens chitobiose Glu540 internal [27]
GH22 none lysozyme type beta-d retaining syn pdb_00001h6m lysozyme C Gallus gallus Chit-2-F-chitosyl Glu35 Asp52 [28]
GH23 none lysozyme type beta-d inverting syn pdb_00001lsp lysozyme G Cygnus atratus Bulgecin A Glu73 internal [29]
GH24 I α + β beta-d inverting syn pdb_0000148l lysozyme E Bacteriophage T4 chitobiosyl Glu11 Glu26 [30]
GH26 A (β/α)8 beta-d retaining anti pdb_00002vx6 exo-β-mannanase Cellvibrio japonicus Ueda107 Gal1Man4 Glu221 Glu338 [31]
GH27 D (β/α)8 alpha-d / beta-l retaining anti pdb_00003lrm α-galactosidase Saccharomyces cerevisiae raffinose Asp209 Asp141 [32]
GH28 N β-helix alpha-d (and α-l-rham) inverting anti pdb_00002uvf exo-polygalacturonosidase Yersinia enterocolitica ATCC9610D digalacturonic acid Asp402 Asp381 Asp403 [33]
GH29 R (β/α)8 alpha-l retaining syn pdb_00003uet α-1,3/4-fucosidase Bifidobacterium longum subsp. infantis lacto-N-fucopentaose II Glu217 Asp172 [34]
GH30 A (β/α)8 beta-d retaining anti pdb_00002y24 glucurono-xylanase Dickea chrysanthemi D1 glucuronoxylan tetrasaccharide Glu165 Glu253 [35]
GH31 D (β/α)8 alpha-d retaining anti pdb_00002qmj maltase-glucoamylase Homo sapiens acarbose Asp542 Asp443 [36]
GH32 J 5-fold β-propeller beta-d retaining anti pdb_00002add fructan β-(2,1)-fructosidase Cichorium intybus sucrose Glu201 Asp22 [37]
GH33 E 6-fold β-propeller alpha-d retaining anti pdb_00001s0i transsialidase Trypanosoma cruzi sialyllactose Asp59 Tyr342 (with Glu230) [38]
GH34 E 6-fold β-propeller alpha-d retaining anti pdb_00004gzw N2 neuraminidase Influenza A Tanzania/205/2010 H3N2 α-d-Neup5Ac-(2,3)-β-d-Galp-(1,4)-β-d-GlcpNAc Asp151 Tyr406 (with Glu277) [39]
GH35 A (β/α)8 beta-d retaining anti pdb_00003ogv β-galactosidase Hypocrea jecorina 2-phenylethyl 1-thio-β-d-galactopyranoside Glu200 Glu298 [40]
GH36 D (β/α)8 alpha-d retaining anti pdb_00004fnu β-galactosidase Geobacillus stearothermophilus stachyose Asp584 Asp478 [41]
GH37 G (α/α)6 alpha-d inverting anti pdb_00002jf4 trehalase Escherichia coli validoxylamine Asp312 Glu496 [42]
GH38 none (β/α)7 alpha-d retaining anti pdb_00003czn Golgi α-mannosidase II Drosophila melanogaster GlcNAcMan(5)GlcNAc(2) Asp341 Asp204 [43]
GH39 A (β/α)8 beta-d / alpha-l retaining anti pdb_00002bfg β-xylosidase Geobacillus stearothermophilus 2,5-dinitrophenyl-β-d-xyloside Glu160 Glu278 [44]
GH42 A (β/α)8 beta-d / alpha-l retaining anti pdb_00004ucf β-galactosidase Bifidobacterium bifidum d-galactose Glu161 Glu320 [45]
GH43 F 5-fold β-propeller beta-d / alpha-l inverting anti pdb_00003akh exo-1,5-α-l-arabinofuranosidase Streptomyces avermitilis α-1,5-arabinofuranotriose Glu196 Asp220 [46]
GH44 none (β/α)8 beta-d retaining anti pdb_00002eqd endoglucanase Clostridium thermocellum cellooctaose Glu186 Glu359 [47]
GH45 none 6-stranded β-barrel beta-d inverting syn pdb_00004eng endo-1,4-glucanase Humicola insolens cellohexaose Asp121 Asp10 [48]
GH46 I lysozyme type beta-d inverting syn pdb_00004olt chitosanase Microbacterium sp. OU01 hexa-glucosamine Glu25 Asp43 [49]
GH47 none (α/α)7 alpha-d inverting anti pdb_00001x9d α-mannosidase I Homo sapiens Me-2-S-(α-Man)-2-thio-α-Man Asp463 Glu599 [50], [51]
GH48 M (α/α)6 beta-d inverting predicted anti by clan see at GH8
GH49 N β-helix alpha-d inverting predicted anti by clan see at GH28
GH50 A (β/α)8 beta-d retaining anti pdb_00004bq5 exo-β-agarase Saccharophagus degradans neoagarotetraose Glu535 Glu695 [52]
GH51 A (β/α)8 beta-d / alpha-l retaining anti pdb_00001qw9 α-l-arabinofuranosidase Geobacillus stearothermophilus PNP-l-arabinofuranoside Glu175 Glu294 [53]
GH52 O (α/α)6 beta-d retaining predicted perpendicular by clan, see at GH116 pdb_00004c1p β-xylosidase Geobacillus thermoglucosidasius xylobiose Asp517 Glu537 [54]
GH53 A (β/α)8 beta-d retaining anti pdb_00002ccr β-1,4-galactanase Bacillus licheniformis galactotriose Glu165 Glu263 [55]
GH54 none β-sandwich beta-d / alpha-l retaining anti pdb_00001wd4 α-l-arabinofuranosidase B Aspergillus kawachii l-arabinofuranose Asp297 Glu221 [56]
GH55 none β-helix beta-d inverting syn pdb_00004tz5 exo-β-1,3-glucanase Streptomyces sp. SirexAA-E laminarihexaose Glu502 unknown [57]
GH56 none (β/α)7 beta-d retaining anti pdb_00001fcv hyaluronidase Apis mellifera (hyaluron.)4 Glu113 internal [58]
GH57 T (β/α)7 alpha-d retaining anti pdb_00001k1y glucanotransferase Thermococcus litoralis acarbose Asp214 Glu123 [59]
GH59 A (β/α)8 beta-d retaining anti pdb_00004ccc β-galactocerebrosidase Mus musculus PNP-β-d-galactoside Glu182 Glu258 [60]
GH62 F 5-fold β-propeller alpha-l inverting anti pdb_00003wn0 α-l-arabinofuranosidase Streptomyces coelicolor β-l-Arabinofuranose Glu361 Asp202 [61]
GH63 G (α/α)6 alpha-d inverting anti pdb_00005ca3 α-glucosidase Escherichia coli glucose and lactose Asp501 Glu727 [62]
GH65 L (α/α)6 alpha-d (and α-l-rham) inverting anti pdb_00004ktr 2-O-α-glucosylglycerol phosphorylase Bacillus selenitireducens isofagomine Glu475 phosphate [63]
GH66 none (β/α)8 alpha-d retaining anti pdb_00005axh dextranase Thermoanaerobacter pseudethanolicus isomaltohexaose Glu374 Asp312 [64]
GH67 none (β/α)8 alpha-d inverting syn pdb_00001l8n α-glucuronidase Geobacillus stearothermophilus 4-O-methyl-d-glucuronic acid and xylotriose Glu286 Asp364 Glu392 [65]
GH68 J 5-fold β-propeller beta-d retaining anti pdb_00001pt2 levansucrase Bacillus subtilis sucrose Glu342 Asp86 [66]
GH70 H (β/α)8 alpha-d retaining anti pdb_00003aic glucansucrase Streptococcus mutans α-acarbose Glu515 Asp477 [67]
GH72 A (β/α)8 beta-d retaining anti pdb_00002w62 β-1,3-glucanotransferase Saccharomyces cerevisiae S288C laminaripentaose Glu176 Glu275 [68]
GH73 none lysozyme type beta-d unknown syn pdb_00007pod peptidoglycan endo-β-1,4-N-acetylglucosaminidase Streptococcus pneumoniae R6 NAG-NAM-NAG-NAM tetrasaccharide Glu585 unknown [69]
GH74 none 7-fold β-propeller beta-d inverting syn pdb_00002ebs cellobiohydrolase (OXG-RCBH) Geotrichum sp. m128 xyloglucan heptasaccharide Asp465 Asp35 [70]
GH76 none (α/α)6 alpha-d retaining anti pdb_00005agd endo-α-1,6-mannanase Bacillus circulans α-1,6-mannopentaose Asp125 Asp124 [71]
GH77 H (β/α)8 alpha-d retaining anti pdb_00002oww 4-α-glucanotransferase Thermus thermofilus acarbose + 4-deoxy-α-d-glucose Glu340 Asp293 [72]
GH78 H (α/α)6 alpha-l inverting anti pdb_00003w5n α-l-rhamnosidase Streptomyces avermitilis l-rhamnose Glu636 Glu895 [73]
GH79 A (β/α)8 beta-d retaining anti pdb_00005e9c heparanase Homo sapiens heparin tetrasaccharide Glu225 Glu343 [74]
GH80 I α + β beta-d inverting predicted syn by clan see at GH24
GH81 none β-sandwich beta-d inverting syn pdb_00005t4g endo-β-1,3-glucanase Bacillus halodurans C-125 laminarin Asp466 Glu542 [75]
GH83 E 6-fold β-propeller alpha-d retaining anti pdb_00001z4x hemagglutinin-neuraminidase Simian virus 5 α-2,3-sialyllactose Asp187 on flexible loop Tyr523 (with Glu390) [76]
GH84 none (β/α)8 beta-d retaining anti pdb_00002chn β-N-acetyl-glucosaminidase Bacteroides thetaiotaomicron VPI-5482 NAG-thiazoline Glu242 internal [77]
GH85 K (β/α)8 beta-d retaining anti pdb_00002w92 endo-β-N-acetyl-glucosaminidase D Streptococcus pneumoniae TIGR4 NAG-thiazoline Glu337 internal [78]
GH86 A (β/α)8 beta-d retaining anti pdb_00004aw7 β-porphyranase Bacteroides plebeius porphyran fragment Glu152 Glu279 [79]
GH89 none (β/α)8 alpha-d retaining anti pdb_00002vcb α-N-acetyl-glucosaminidase Clostridium perfringens PUGNAc Glu483 Glu601 [80]
GH92 none (α/α)6 and β-sandwich alpha-d inverting anti pdb_00002ww1 α-1,2-mannosidase Bacteroides thetaiotaomicron VPI-5482 thiomannobioside Glu533 Asp644 Asp642 [81]
GH93 E 6-fold β-propeller alpha-l retaining anti pdb_00003a72 exo-arabinanase Penicillium chrysogenum arabinobiose Glu246 Glu174 [82]
GH94 Q (α/α)6 beta-d inverting syn pdb_00004zli cellobionic acid phosphorylase Saccharophagus degradans 3-O-β-d-glucopyranosyl-α-d-glucopyranuronic acid Asp472 phosphate [83]
GH95 none (α/α)6 alpha-l inverting anti pdb_00002ead α-1,2-l-fucosidase Bifidobacterium bifidum Fuc-α-1,2-Gal Glu566 Asn423 Asp766 [84]
GH97 none (β/α)8 alpha-d retaining + inverting anti pdb_00002zq0 α-glucosidase Bacteroides thetaiotaomicron VPI-5482 acarbose Glu532 Glu508 [85]
GH98 none (β/α)8 and β-sandwich beta-d inverting anti pdb_00002wmg endo-β-1,4-galactosidase Streptococcus pneumoniae A-LewisY pentasaccharide Glu158 Asp251 Glu301 [86]
GH99 none (β/α)8 alpha-d retaining anti pdb_00004ad4 endo-α-mannosidase Bacteroides xylanisolvens glucose-1,3-isofagomine and α-1,2- mannobiose Glu336 debated [87]
GH100 G (α/α)6 core beta-d inverting anti pdb_00005gop invertase Anabaena (Nostoc) sp. pcc7120 sucrose Asp188 Glu414 [88]
GH101 none (β/α)8 alpha-d retaining anti pdb_00005a56 endo-α-N-acetylgalactosaminidase Streptococcus pneumoniae TIGR4 β-d-Galp-(1-3)-α-d-GalpNAc-(1)-methyl Glu796 +water Asp764 [89]
GH102 none double-ψ β-barrel beta-d retaining syn pdb_00002pi8 lytic transglycosylase A Escherichia coli chitohexaose Asp308 none [90]
GH103 none lysozyme type beta-d retaining syn pdb_00001d0k lytic transglycosylase SLT35 Escherichia coli murodipeptides Glu162 internal [91]
GH106 none (β/α)8 alpha-l inverting anti pdb_00005mwk α-l-rhamnosidase BT_0986 Bacteroides thetaiotaomicron pectin heptasaccharide Glu461 Glu593 or Glu561 [92]
GH107 R (β/α)8 alpha-l retaining predicted syn by clan see at GH29
GH110 none parallel β-helix alpha-d inverting anti pdb_00007jwf α-1,3-galactosidase Pseudoalteromonas distincta Gal-α1,3-Gal Asp344 Asp321 Asp345 [93]
GH113 A (β/α)8 beta-d retaining anti pdb_00004cd8 β-mannanase Alicyclobacillus acidocaldarius mannobioimidazole Glu151 Glu231 [94]
GH116 O (α/α)6 and β-sandwich beta-d retaining perpendicular (anomaly) pdb_00008i5u β-glucosidase Thermoanaerobacterium xylanolyticum LX-11 laminaribiose Asp593 Glu441 [95]
GH117 F 5-fold β-propeller alpha-l inverting anti pdb_00004ak7 α-1,3-3,6-anhydro-l-galactosidase Bacteroides plebeius neoagarobiose His302 (relay from Asp320) Asp90 [96]
GH119 T (β/α)7 alpha-d retaining predicted anti by clan see at GH57
GH120 none parallel β-helix and β-sandwich beta-d retaining anti pdb_00003vsv β-xylosidase XylC Thermoanaerobacterium saccharolyticum JW/SL-YS485 d-xylose Glu405 Asp382 [97]
GH123 none (β/α)8 and β-sandwich beta-d retaining anti pdb_00005fr0 exo-β-N-acetyl-galactosaminidase Clostridium perfringens N-difluoroacetyl-d-galactosamine Glu345 internal [98]
GH124 none lysozyme type beta-d inverting syn pdb_00006g1i endo-β-1,4-glucanase Acetivibrio thermocellus ATCC 27405 fructosylated cellopentaose Glu203 unknown [99]
GH125 L (α/α)6 alpha-d inverting anti pdb_00005m7y exo-α-1,6-mannosidase Clostridium perfringens 1,6-α-mannotriose Asp220 Glu393 [100]
GH127 P (α/α)6 and β-sandwich beta-l retaining anti pdb_00003wrg β-l-arabinofuranosidase Bifidobacterium longum l-arabinose Glu322 Cys417 [101]
GH128 A (β/α)8 beta-d retaining anti pdb_00006ufl β-1,3-glucanase Amycolatopsis mediterranei laminarihexaose Glu102 Glu199 [102]
GH129 none (β/α)8 alpha-d retaining anti pdb_00005wzn exo-α-N-acetylgalactosaminidase (NagBb) Bifidobacterium bifidum JCM 1254 GalNAc Glu478 Asp435 [103]
GH130 none 5-fold β-propeller beta-d inverting anti pdb_00005b0s β-1,2-mannobiose phosphorylase Listeria innocua β-1,2-mannotriose Asp141 relay phosphate [104]
GH133 none (α/α)6 alpha-d retaining anti pdb_00005d0f glycogen-debranching enzyme Nakaseomyces glabratus CBS 138 maltopentaose Glu564 Asp535 [105]
GH134 none β + α beta-d inverting syn pdb_00005jug β-mannanase Streptomyces sp. mannopentaose Glu45 Asp57 [106]
GH136 none β-helix beta-d retaining syn pdb_00005gqf lacto-N-biosidase Bifidobacterium longum lacto-N-biose Asp411 Asp418 [107]
GH137 none 5-fold β-propeller beta-l unknown anti pdb_00005mui β-l-arabinofuranosidase BT_0996 Bacteroides thetaiotaomicron pectin oligosaccharide Glu240 Glu159 [92]
GH138 none (β/α)8 alpha-d retaining syn pdb_00006hzg α-1,2-d-galacturonidase Bacteroides paurosaccharolyticus alpha-d-galactopyranuronic Glu294 Glu361 [108]
GH140 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH144 S (α/α)8 beta-d inverting syn pdb_00008xul beta-1,2-glucanase Xanthomonas campestris beta-1,2-glucoheptasaccharide Glu239 unknown [109]
GH146 P (α/α)6 and β-sandwich beta-l retaining anti pdb_00005opj β-l-arabinofuranosidase Bacteroides thetaiotaomicron l-arabinose Glu320 Cys416 [110]
GH147 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH148 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH149 Q (α/α)6 beta-d inverting predicted syn by clan see at GH94
GH156 none (β/α)8 alpha-d inverting syn pdb_00006s0e exo-α-sialidase uncultured bacterium pG7 N-acetyl-2,3-dehydro-2-deoxyneuraminic acid His134 (relay from Asp132) Asp14 [111]
GH157 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH158 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH161 Q (α/α)6 beta-d retaining predicted syn by clan see at GH94
GH162 S (α/α)6 beta-d inverting syn pdb_00006imw endo-β-1,2-glucanase Talaromyces funiculosus beta-1,2-glucan Glu262 via C3-OH of glc at subs. +2 Asp446 [112]
GH164 A (β/α)8 beta-d retaining anti pdb_00006t75 β-mannosidase Bacteroides salyersiae 2-deoxy-2-F-mannosyl Glu160 Glu297 [113]
GH167 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH168 none (β/α)8 alpha-l retaining syn pdb_00008ya7 endo-α-1,3-l-fucanase (Fun168A) Wenyingzhuangia fucanilytica CZ1127 sulfated fucotetraose Glu264 Asp206 [114]
GH169 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH172 none β-jelly roll alpha-d retaining anti pdb_00007v1w difructose-anhydride synthase Bifidobacterium dentum beta-d-arabinofuranose Glu270 Glu291 [115]
GH173 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH178 L (α/α)6 alpha-d inverting predicted anti by clan see at e.g. GH15
GH181 E 6-fold β-propeller alpha-d inverting anti pdb_00008axi exo-α-sialidase Akkermansia muciniphila 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid + T-antigen disaccharide Asp345 Glu218 [116]
GH183 none 5-bladed β-propeller alpha-d retaining anti pdb_00008ic1 endo-α-1,5-d-arabinofuranosidase Microbacterium arabinogalactanolyticum JCM 9171 α-d-Araf-(1,5)-α-d-Araf-(1,5)-α-d-Araf-(1,5)-α-d-Araf Asp51 Asp33 [117]
GH186 none β-sandwich beta-d inverting syn pdb_00008ip1 β-1,2-glucanase Escherechia coli β-1,2-glucan Asp388 Asp300 + 3 waters [118]
n.c.* none parallel β-helix alpha-d inverting anti pdb_00002vjj endo-α-N-acetylglucosaminidase Bacteriophage HK620 O18A1 O-antigen hexasaccharide Asp339 Glu372 [119]

* n.c.: Found among the collection of non-classified GH sequences in the CAZy Database.

References

  1. Heightman TD and Vasella AT. Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. Angew Chem Int Ed. 1999 38(6):750-770. Article online.

    [HeightmanVasella1999]
  2. Nerinckx W, Desmet T, Piens K, and Claeyssens M. (2005). An elaboration on the syn-anti proton donor concept of glycoside hydrolases: electrostatic stabilisation of the transition state as a general strategy. FEBS Lett. 2005;579(2):302-12. DOI:10.1016/j.febslet.2004.12.021 | PubMed ID:15642336 [Nerinckx2005]
  3. Wu M, Nerinckx W, Piens K, Ishida T, Hansson H, Sandgren M, and Ståhlberg J. (2013). Rational design, synthesis, evaluation and enzyme-substrate structures of improved fluorogenic substrates for family 6 glycoside hydrolases. FEBS J. 2013;280(1):184-98. DOI:10.1111/febs.12060 | PubMed ID:23137336 [Wu2012]
  4. Pérez S and Marchessault RH. The exo-anomeric effect: experimental evidence from crystal structures. Carbohydr res. 1978 65:114-120. DOI:10.1016/S0008-6215(00)84218-4

    [Perez1978]
  5. Cramer CJ, Truhlar DG, and French AD. Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution. Carbohydr res. 1997 298:1-14. DOI:10.1016/S0008-6215(96)00297-2

    [Cramer1997]
  6. Johnson GP, Petersen L, French AD, and Reilly PJ. (2009). Twisting of glycosidic bonds by hydrolases. Carbohydr Res. 2009;344(16):2157-66. DOI:10.1016/j.carres.2009.08.011 | PubMed ID:19733839 [Johnson2009]
  7. Alonso ER, Peña I, Cabezas C, and Alonso JL. (2016). Structural Expression of Exo-Anomeric Effect. J Phys Chem Lett. 2016;7(5):845-50. DOI:10.1021/acs.jpclett.6b00028 | PubMed ID:26889578 [Alonso2016]
  8. Gloster TM, Roberts S, Perugino G, Rossi M, Moracci M, Panday N, Terinek M, Vasella A, and Davies GJ. (2006). Structural, kinetic, and thermodynamic analysis of glucoimidazole-derived glycosidase inhibitors. Biochemistry. 2006;45(39):11879-84. DOI:10.1021/bi060973x | PubMed ID:17002288 [Gloster2006]
  9. van Bueren AL, Ghinet MG, Gregg K, Fleury A, Brzezinski R, and Boraston AB. (2009). The structural basis of substrate recognition in an exo-beta-D-glucosaminidase involved in chitosan hydrolysis. J Mol Biol. 2009;385(1):131-9. DOI:10.1016/j.jmb.2008.10.031 | PubMed ID:18976664 [van_Bueren2009]
  10. Hrmova M, Varghese JN, De Gori R, Smith BJ, Driguez H, and Fincher GB. (2001). Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant beta-D-glucan glucohydrolase. Structure. 2001;9(11):1005-16. DOI:10.1016/s0969-2126(01)00673-6 | PubMed ID:11709165 [Hrmova2001]
  11. Rajan SS, Yang X, Collart F, Yip VL, Withers SG, Varrot A, Thompson J, Davies GJ, and Anderson WF. (2004). Novel catalytic mechanism of glycoside hydrolysis based on the structure of an NAD+/Mn2+ -dependent phospho-alpha-glucosidase from Bacillus subtilis. Structure. 2004;12(9):1619-29. DOI:10.1016/j.str.2004.06.020 | PubMed ID:15341727 [Rajan2004]
  12. Varrot A and Davies GJ. (2003). Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A. Acta Crystallogr D Biol Crystallogr. 2003;59(Pt 3):447-52. DOI:10.1107/s0907444902023405 | PubMed ID:12595701 [Varrot2003]
  13. Zou Jy, Kleywegt GJ, Ståhlberg J, Driguez H, Nerinckx W, Claeyssens M, Koivula A, Teeri TT, and Jones TA. (1999). Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei. Structure. 1999;7(9):1035-45. DOI:10.1016/s0969-2126(99)80171-3 | PubMed ID:10508787 [Zhou1999]
  14. Sulzenbacher G, Mackenzie LF, Wilson KS, Withers SG, Dupont C, and Davies GJ. (1999). The crystal structure of a 2-fluorocellotriosyl complex of the Streptomyces lividans endoglucanase CelB2 at 1.2 A resolution. Biochemistry. 1999;38(15):4826-33. DOI:10.1021/bi982648i | PubMed ID:10200171 [Sulzenbacher1999]
  15. Guérin DM, Lascombe MB, Costabel M, Souchon H, Lamzin V, Béguin P, and Alzari PM. (2002). Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate. J Mol Biol. 2002;316(5):1061-9. DOI:10.1006/jmbi.2001.5404 | PubMed ID:11884144 [Guerin2002]
  16. Schubot FD, Kataeva IA, Chang J, Shah AK, Ljungdahl LG, Rose JP, and Wang BC. (2004). Structural basis for the exocellulase activity of the cellobiohydrolase CbhA from Clostridium thermocellum. Biochemistry. 2004;43(5):1163-70. DOI:10.1021/bi030202i | PubMed ID:14756552 [Schubot2004]
  17. Suzuki R, Fujimoto Z, Ito S, Kawahara S, Kaneko S, Taira K, Hasegawa T, and Kuno A. (2009). Crystallographic snapshots of an entire reaction cycle for a retaining xylanase from Streptomyces olivaceoviridis E-86. J Biochem. 2009;146(1):61-70. DOI:10.1093/jb/mvp047 | PubMed ID:19279191 [Suzuki2009]
  18. Wan Q, Zhang Q, Hamilton-Brehm S, Weiss K, Mustyakimov M, Coates L, Langan P, Graham D, and Kovalevsky A. (2014). X-ray crystallographic studies of family 11 xylanase Michaelis and product complexes: implications for the catalytic mechanism. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt 1):11-23. DOI:10.1107/S1399004713023626 | PubMed ID:24419374 [Wan2014]
  19. Sandgren M, Berglund GI, Shaw A, Ståhlberg J, Kenne L, Desmet T, and Mitchinson C. (2004). Crystal complex structures reveal how substrate is bound in the -4 to the +2 binding sites of Humicola grisea Cel12A. J Mol Biol. 2004;342(5):1505-17. DOI:10.1016/j.jmb.2004.07.098 | PubMed ID:15364577 [Sandgren2004]
  20. Uitdehaag JC, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, and Dijkstra BW. (1999). X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat Struct Biol. 1999;6(5):432-6. DOI:10.1038/8235 | PubMed ID:10331869 [Uitdehaag1999]
  21. Miyake H, Kurisu G, Kusunoki M, Nishimura S, Kitamura S, and Nitta Y. (2003). Crystal structure of a catalytic site mutant of beta-amylase from Bacillus cereus var. mycoides cocrystallized with maltopentaose. Biochemistry. 2003;42(19):5574-81. DOI:10.1021/bi020712x | PubMed ID:12741813 [Miyake2003]
  22. Harris EM, Aleshin AE, Firsov LM, and Honzatko RB. (1993). Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. Biochemistry. 1993;32(6):1618-26. DOI:10.1021/bi00057a028 | PubMed ID:8431441 [Harris1993]
  23. Allouch J, Helbert W, Henrissat B, and Czjzek M. (2004). Parallel substrate binding sites in a beta-agarase suggest a novel mode of action on double-helical agarose. Structure. 2004;12(4):623-32. DOI:10.1016/j.str.2004.02.020 | PubMed ID:15062085 [Allouch2004]
  24. Wojtkowiak A, Witek K, Hennig J, and Jaskolski M. (2013). Structures of an active-site mutant of a plant 1,3-β-glucanase in complex with oligosaccharide products of hydrolysis. Acta Crystallogr D Biol Crystallogr. 2013;69(Pt 1):52-62. DOI:10.1107/S0907444912042175 | PubMed ID:23275163 [Wojtkowiak2013]
  25. Papanikolau Y, Prag G, Tavlas G, Vorgias CE, Oppenheim AB, and Petratos K. (2001). High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry. 2001;40(38):11338-43. DOI:10.1021/bi010505h | PubMed ID:11560481 [Papanikolau2001]
  26. Ohnuma T, Umemoto N, Nagata T, Shinya S, Numata T, Taira T, and Fukamizo T. (2014). Crystal structure of a "loopless" GH19 chitinase in complex with chitin tetrasaccharide spanning the catalytic center. Biochim Biophys Acta. 2014;1844(4):793-802. DOI:10.1016/j.bbapap.2014.02.013 | PubMed ID:24582745 [Ohnuma2014]
  27. Prag G, Papanikolau Y, Tavlas G, Vorgias CE, Petratos K, and Oppenheim AB. (2000). Structures of chitobiase mutants complexed with the substrate Di-N-acetyl-d-glucosamine: the catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540. J Mol Biol. 2000;300(3):611-7. DOI:10.1006/jmbi.2000.3906 | PubMed ID:10884356 [Prag2000]
  28. Vocadlo DJ, Davies GJ, Laine R, and Withers SG. (2001). Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature. 2001;412(6849):835-8. DOI:10.1038/35090602 | PubMed ID:11518970 [Vocadlo2001]
  29. Karlsen S, Hough E, Rao ZH, and Isaacs NW. (1996). Structure of a bulgecin-inhibited g-type lysozyme from the egg white of the Australian black swan. A comparison of the binding of bulgecin to three muramidases. Acta Crystallogr D Biol Crystallogr. 1996;52(Pt 1):105-14. DOI:10.1107/S0907444995008468 | PubMed ID:15299731 [Karlsen1996]
  30. Baldwin EP, Hajiseyedjavadi O, Baase WA, and Matthews BW. (1993). The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme. Science. 1993;262(5140):1715-8. DOI:10.1126/science.8259514 | PubMed ID:8259514 [Baldwin1993]
  31. Cartmell A, Topakas E, Ducros VM, Suits MD, Davies GJ, and Gilbert HJ. (2008). The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. J Biol Chem. 2008;283(49):34403-13. DOI:10.1074/jbc.M804053200 | PubMed ID:18799462 [Cartmell2008]
  32. Fernández-Leiro R, Pereira-Rodríguez A, Cerdán ME, Becerra M, and Sanz-Aparicio J. (2010). Structural analysis of Saccharomyces cerevisiae alpha-galactosidase and its complexes with natural substrates reveals new insights into substrate specificity of GH27 glycosidases. J Biol Chem. 2010;285(36):28020-33. DOI:10.1074/jbc.M110.144584 | PubMed ID:20592022 [Fernandez-Leiro2010]
  33. Abbott DW and Boraston AB. (2007). The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase. J Mol Biol. 2007;368(5):1215-22. DOI:10.1016/j.jmb.2007.02.083 | PubMed ID:17397864 [Abbott2007]
  34. Sakurama H, Fushinobu S, Hidaka M, Yoshida E, Honda Y, Ashida H, Kitaoka M, Kumagai H, Yamamoto K, and Katayama T. (2012). 1,3-1,4-α-L-fucosynthase that specifically introduces Lewis a/x antigens into type-1/2 chains. J Biol Chem. 2012;287(20):16709-19. DOI:10.1074/jbc.M111.333781 | PubMed ID:22451675 [Sakurama2012]
  35. Urbániková L, Vršanská M, Mørkeberg Krogh KB, Hoff T, and Biely P. (2011). Structural basis for substrate recognition by Erwinia chrysanthemi GH30 glucuronoxylanase. FEBS J. 2011;278(12):2105-16. DOI:10.1111/j.1742-4658.2011.08127.x | PubMed ID:21501386 [Urbanikova2011]
  36. Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, and Rose DR. (2008). Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol. 2008;375(3):782-92. DOI:10.1016/j.jmb.2007.10.069 | PubMed ID:18036614 [Sim2008]
  37. Verhaest M, Lammens W, Le Roy K, De Ranter CJ, Van Laere A, Rabijns A, and Van den Ende W. (2007). Insights into the fine architecture of the active site of chicory fructan 1-exohydrolase: 1-kestose as substrate vs sucrose as inhibitor. New Phytol. 2007;174(1):90-100. DOI:10.1111/j.1469-8137.2007.01988.x | PubMed ID:17335500 [Verhaest2007]
  38. Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, and Alzari PM. (2004). Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure. 2004;12(5):775-84. DOI:10.1016/j.str.2004.02.036 | PubMed ID:15130470 [Amaya2004]
  39. Zhu X, McBride R, Nycholat CM, Yu W, Paulson JC, and Wilson IA. (2012). Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic Acid receptors. J Virol. 2012;86(24):13371-83. DOI:10.1128/JVI.01426-12 | PubMed ID:23015718 [Zhu2012]
  40. Maksimainen M, Hakulinen N, Kallio JM, Timoharju T, Turunen O, and Rouvinen J. (2011). Crystal structures of Trichoderma reesei β-galactosidase reveal conformational changes in the active site. J Struct Biol. 2011;174(1):156-63. DOI:10.1016/j.jsb.2010.11.024 | PubMed ID:21130883 [Maksimainen2011]
  41. Merceron R, Foucault M, Haser R, Mattes R, Watzlawick H, and Gouet P. (2012). The molecular mechanism of thermostable α-galactosidases AgaA and AgaB explained by x-ray crystallography and mutational studies. J Biol Chem. 2012;287(47):39642-52. DOI:10.1074/jbc.M112.394114 | PubMed ID:23012371 [Merceron2012]
  42. Gibson RP, Gloster TM, Roberts S, Warren RA, Storch de Gracia I, García A, Chiara JL, and Davies GJ. (2007). Molecular basis for trehalase inhibition revealed by the structure of trehalase in complex with potent inhibitors. Angew Chem Int Ed Engl. 2007;46(22):4115-9. DOI:10.1002/anie.200604825 | PubMed ID:17455176 [Gibson2007]
  43. Shah N, Kuntz DA, and Rose DR. (2008). Golgi alpha-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc Natl Acad Sci U S A. 2008;105(28):9570-5. DOI:10.1073/pnas.0802206105 | PubMed ID:18599462 [Shah2008]
  44. Czjzek M, Ben David A, Bravman T, Shoham G, Henrissat B, and Shoham Y. (2005). Enzyme-substrate complex structures of a GH39 beta-xylosidase from Geobacillus stearothermophilus. J Mol Biol. 2005;353(4):838-46. DOI:10.1016/j.jmb.2005.09.003 | PubMed ID:16212978 [Czjzek2005]
  45. Godoy AS, Camilo CM, Kadowaki MA, Muniz HD, Espirito Santo M, Murakami MT, Nascimento AS, and Polikarpov I. (2016). Crystal structure of β1→6-galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular determinants of the enzymatic activity and its inhibition by α-galactose. FEBS J. 2016;283(22):4097-4112. DOI:10.1111/febs.13908 | PubMed ID:27685756 [Godoy2016]
  46. Fujimoto Z, Ichinose H, Maehara T, Honda M, Kitaoka M, and Kaneko S. (2010). Crystal structure of an Exo-1,5-{alpha}-L-arabinofuranosidase from Streptomyces avermitilis provides insights into the mechanism of substrate discrimination between exo- and endo-type enzymes in glycoside hydrolase family 43. J Biol Chem. 2010;285(44):34134-43. DOI:10.1074/jbc.M110.164251 | PubMed ID:20739278 [Fujimoto2010]
  47. Kitago Y, Karita S, Watanabe N, Kamiya M, Aizawa T, Sakka K, and Tanaka I. (2007). Crystal structure of Cel44A, a glycoside hydrolase family 44 endoglucanase from Clostridium thermocellum. J Biol Chem. 2007;282(49):35703-11. DOI:10.1074/jbc.M706835200 | PubMed ID:17905739 [Kitago2007]
  48. Davies GJ, Dodson G, Moore MH, Tolley SP, Dauter Z, Wilson KS, Rasmussen G, and Schülein M. (1996). Structure determination and refinement of the Humicola insolens endoglucanase V at 1.5 A resolution. Acta Crystallogr D Biol Crystallogr. 1996;52(Pt 1):7-17. DOI:10.1107/S0907444995009280 | PubMed ID:15299721 [Davies1996]
  49. Lyu Q, Wang S, Xu W, Han B, Liu W, Jones DN, and Liu W. (2014). Structural insights into the substrate-binding mechanism for a novel chitosanase. Biochem J. 2014;461(2):335-45. DOI:10.1042/BJ20140159 | PubMed ID:24766439 [Lyu2014]
  50. Karaveg K, Siriwardena A, Tempel W, Liu ZJ, Glushka J, Wang BC, and Moremen KW. (2005). Mechanism of class 1 (glycosylhydrolase family 47) {alpha}-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem. 2005;280(16):16197-207. DOI:10.1074/jbc.M500119200 | PubMed ID:15713668 [Karaveg2005]
  51. Cantú D, Nerinckx W, and Reilly PJ. (2008). Theory and computation show that Asp463 is the catalytic proton donor in human endoplasmic reticulum alpha-(1-->2)-mannosidase I. Carbohydr Res. 2008;343(13):2235-42. DOI:10.1016/j.carres.2008.05.026 | PubMed ID:18619586 [Nerinckx2008]
  52. Pluvinage B, Hehemann JH, and Boraston AB. (2013). Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans. J Biol Chem. 2013;288(39):28078-88. DOI:10.1074/jbc.M113.491068 | PubMed ID:23921382 [Pluvinage2013]
  53. Hövel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, Shoham Y, and Schomburg D. (2003). Crystal structure and snapshots along the reaction pathway of a family 51 alpha-L-arabinofuranosidase. EMBO J. 2003;22(19):4922-32. DOI:10.1093/emboj/cdg494 | PubMed ID:14517232 [Hoevel2003]
  54. Espina G, Eley K, Pompidor G, Schneider TR, Crennell SJ, and Danson MJ. (2014). A novel β-xylosidase structure from Geobacillus thermoglucosidasius: the first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt 5):1366-74. DOI:10.1107/S1399004714002788 | PubMed ID:24816105 [Espina2014]
  55. Le Nours J, De Maria L, Welner D, Jørgensen CT, Christensen LL, Borchert TV, Larsen S, and Lo Leggio L. (2009). Investigating the binding of beta-1,4-galactan to Bacillus licheniformis beta-1,4-galactanase by crystallography and computational modeling. Proteins. 2009;75(4):977-89. DOI:10.1002/prot.22310 | PubMed ID:19089956 [Le_Nours2009]
  56. Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, and Fushinobu S. (2004). Crystal structure of a family 54 alpha-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J Biol Chem. 2004;279(43):44907-14. DOI:10.1074/jbc.M405390200 | PubMed ID:15292273 [Miyanaga2004]
  57. Bianchetti CM, Takasuka TE, Deutsch S, Udell HS, Yik EJ, Bergeman LF, and Fox BG. (2015). Active site and laminarin binding in glycoside hydrolase family 55. J Biol Chem. 2015;290(19):11819-32. DOI:10.1074/jbc.M114.623579 | PubMed ID:25752603 [Bianchetti2015]
  58. Marković-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Müller U, and Schirmer T. (2000). Crystal structure of hyaluronidase, a major allergen of bee venom. Structure. 2000;8(10):1025-35. DOI:10.1016/s0969-2126(00)00511-6 | PubMed ID:11080624 [Markovic-Housley2000]
  59. Imamura H, Fushinobu S, Yamamoto M, Kumasaka T, Jeon BS, Wakagi T, and Matsuzawa H. (2003). Crystal structures of 4-alpha-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor. J Biol Chem. 2003;278(21):19378-86. DOI:10.1074/jbc.M213134200 | PubMed ID:12618437 [Imamura2003]
  60. Hill CH, Graham SC, Read RJ, and Deane JE. (2013). Structural snapshots illustrate the catalytic cycle of β-galactocerebrosidase, the defective enzyme in Krabbe disease. Proc Natl Acad Sci U S A. 2013;110(51):20479-84. DOI:10.1073/pnas.1311990110 | PubMed ID:24297913 [Hill2013]
  61. Maehara T, Fujimoto Z, Ichinose H, Michikawa M, Harazono K, and Kaneko S. (2014). Crystal structure and characterization of the glycoside hydrolase family 62 α-L-arabinofuranosidase from Streptomyces coelicolor. J Biol Chem. 2014;289(11):7962-72. DOI:10.1074/jbc.M113.540542 | PubMed ID:24482228 [Maehara2014]
  62. Miyazaki T, Nishikawa A, and Tonozuka T. (2016). Crystal structure of the enzyme-product complex reveals sugar ring distortion during catalysis by family 63 inverting α-glycosidase. J Struct Biol. 2016;196(3):479-486. DOI:10.1016/j.jsb.2016.09.015 | PubMed ID:27688023 [Miyazaki2016]
  63. Touhara KK, Nihira T, Kitaoka M, Nakai H, and Fushinobu S. (2014). Structural basis for reversible phosphorolysis and hydrolysis reactions of 2-O-α-glucosylglycerol phosphorylase. J Biol Chem. 2014;289(26):18067-75. DOI:10.1074/jbc.M114.573212 | PubMed ID:24828502 [Touhara2014]
  64. Suzuki N, Kishine N, Fujimoto Z, Sakurai M, Momma M, Ko JA, Nam SH, Kimura A, and Kim YM. (2016). Crystal structure of thermophilic dextranase from Thermoanaerobacter pseudethanolicus. J Biochem. 2016;159(3):331-9. DOI:10.1093/jb/mvv104 | PubMed ID:26494689 [Suzuki2016]
  65. Golan G, Shallom D, Teplitsky A, Zaide G, Shulami S, Baasov T, Stojanoff V, Thompson A, Shoham Y, and Shoham G. (2004). Crystal structures of Geobacillus stearothermophilus alpha-glucuronidase complexed with its substrate and products: mechanistic implications. J Biol Chem. 2004;279(4):3014-24. DOI:10.1074/jbc.M310098200 | PubMed ID:14573597 [Golan2004]
  66. Meng G and Fütterer K. (2003). Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Biol. 2003;10(11):935-41. DOI:10.1038/nsb974 | PubMed ID:14517548 [Meng2003]
  67. Ito K, Ito S, Shimamura T, Weyand S, Kawarasaki Y, Misaka T, Abe K, Kobayashi T, Cameron AD, and Iwata S. (2011). Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J Mol Biol. 2011;408(2):177-86. DOI:10.1016/j.jmb.2011.02.028 | PubMed ID:21354427 [Ito2011]
  68. Hurtado-Guerrero R, Schüttelkopf AW, Mouyna I, Ibrahim AF, Shepherd S, Fontaine T, Latgé JP, and van Aalten DM. (2009). Molecular mechanisms of yeast cell wall glucan remodeling. J Biol Chem. 2009;284(13):8461-9. DOI:10.1074/jbc.M807990200 | PubMed ID:19097997 [Hurtado-Gerrero2009]
  69. Martínez-Caballero S, Freton C, Molina R, Bartual SG, Gueguen-Chaignon V, Mercy C, Gago F, Mahasenan KV, Muñoz IG, Lee M, Hesek D, Mobashery S, Hermoso JA, and Grangeasse C. (2023). Molecular basis of the final step of cell division in Streptococcus pneumoniae. Cell Rep. 2023;42(7):112756. DOI:10.1016/j.celrep.2023.112756 | PubMed ID:37418323 [Martinez-Caballero2023]
  70. Yaoi K, Kondo H, Hiyoshi A, Noro N, Sugimoto H, Tsuda S, Mitsuishi Y, and Miyazaki K. (2007). The structural basis for the exo-mode of action in GH74 oligoxyloglucan reducing end-specific cellobiohydrolase. J Mol Biol. 2007;370(1):53-62. DOI:10.1016/j.jmb.2007.04.035 | PubMed ID:17498741 [Yaoi2007]
  71. Thompson AJ, Speciale G, Iglesias-Fernández J, Hakki Z, Belz T, Cartmell A, Spears RJ, Chandler E, Temple MJ, Stepper J, Gilbert HJ, Rovira C, Williams SJ, and Davies GJ. (2015). Evidence for a boat conformation at the transition state of GH76 α-1,6-mannanases--key enzymes in bacterial and fungal mannoprotein metabolism. Angew Chem Int Ed Engl. 2015;54(18):5378-82. DOI:10.1002/anie.201410502 | PubMed ID:25772148 [Thompson2015]
  72. Barends TR, Bultema JB, Kaper T, van der Maarel MJ, Dijkhuizen L, and Dijkstra BW. (2007). Three-way stabilization of the covalent intermediate in amylomaltase, an alpha-amylase-like transglycosylase. J Biol Chem. 2007;282(23):17242-9. DOI:10.1074/jbc.M701444200 | PubMed ID:17420245 [Barends2007]
  73. Fujimoto Z, Jackson A, Michikawa M, Maehara T, Momma M, Henrissat B, Gilbert HJ, and Kaneko S. (2013). The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. J Biol Chem. 2013;288(17):12376-85. DOI:10.1074/jbc.M113.460097 | PubMed ID:23486481 [Fujimoto2013]
  74. Wu L, Viola CM, Brzozowski AM, and Davies GJ. (2015). Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol. 2015;22(12):1016-22. DOI:10.1038/nsmb.3136 | PubMed ID:26575439 [Wu2015]
  75. Pluvinage B, Fillo A, Massel P, and Boraston AB. (2017). Structural Analysis of a Family 81 Glycoside Hydrolase Implicates Its Recognition of β-1,3-Glucan Quaternary Structure. Structure. 2017;25(9):1348-1359.e3. DOI:10.1016/j.str.2017.06.019 | PubMed ID:28781080 [Pluvinage2017]
  76. Yuan P, Thompson TB, Wurzburg BA, Paterson RG, Lamb RA, and Jardetzky TS. (2005). Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Structure. 2005;13(5):803-15. DOI:10.1016/j.str.2005.02.019 | PubMed ID:15893670 [Yuan2005]
  77. Dennis RJ, Taylor EJ, Macauley MS, Stubbs KA, Turkenburg JP, Hart SJ, Black GN, Vocadlo DJ, and Davies GJ. (2006). Structure and mechanism of a bacterial beta-glucosaminidase having O-GlcNAcase activity. Nat Struct Mol Biol. 2006;13(4):365-71. DOI:10.1038/nsmb1079 | PubMed ID:16565725 [Dennis2006]
  78. Abbott DW, Macauley MS, Vocadlo DJ, and Boraston AB. (2009). Streptococcus pneumoniae endohexosaminidase D, structural and mechanistic insight into substrate-assisted catalysis in family 85 glycoside hydrolases. J Biol Chem. 2009;284(17):11676-89. DOI:10.1074/jbc.M809663200 | PubMed ID:19181667 [Abbott2009]
  79. Hehemann JH, Kelly AG, Pudlo NA, Martens EC, and Boraston AB. (2012). Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc Natl Acad Sci U S A. 2012;109(48):19786-91. DOI:10.1073/pnas.1211002109 | PubMed ID:23150581 [Hehemann_1_2012]
  80. Ficko-Blean E, Stubbs KA, Nemirovsky O, Vocadlo DJ, and Boraston AB. (2008). Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB. Proc Natl Acad Sci U S A. 2008;105(18):6560-5. DOI:10.1073/pnas.0711491105 | PubMed ID:18443291 [Ficko-Blean2008]
  81. Zhu Y, Suits MD, Thompson AJ, Chavan S, Dinev Z, Dumon C, Smith N, Moremen KW, Xiang Y, Siriwardena A, Williams SJ, Gilbert HJ, and Davies GJ. (2010). Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. Nat Chem Biol. 2010;6(2):125-32. DOI:10.1038/nchembio.278 | PubMed ID:20081828 [Zhu2009]
  82. Sogabe Y, Kitatani T, Yamaguchi A, Kinoshita T, Adachi H, Takano K, Inoue T, Mori Y, Matsumura H, Sakamoto T, and Tada T. (2011). High-resolution structure of exo-arabinanase from Penicillium chrysogenum. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 5):415-22. DOI:10.1107/S0907444911006299 | PubMed ID:21543843 [Sogabe2011]
  83. Nam YW, Nihira T, Arakawa T, Saito Y, Kitaoka M, Nakai H, and Fushinobu S. (2015). Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes. J Biol Chem. 2015;290(30):18281-92. DOI:10.1074/jbc.M115.664664 | PubMed ID:26041776 [Nam2015]
  84. Nagae M, Tsuchiya A, Katayama T, Yamamoto K, Wakatsuki S, and Kato R. (2007). Structural basis of the catalytic reaction mechanism of novel 1,2-alpha-L-fucosidase from Bifidobacterium bifidum. J Biol Chem. 2007;282(25):18497-18509. DOI:10.1074/jbc.M702246200 | PubMed ID:17459873 [Nagae2007]
  85. Kitamura M, Okuyama M, Tanzawa F, Mori H, Kitago Y, Watanabe N, Kimura A, Tanaka I, and Yao M. (2008). Structural and functional analysis of a glycoside hydrolase family 97 enzyme from Bacteroides thetaiotaomicron. J Biol Chem. 2008;283(52):36328-37. DOI:10.1074/jbc.M806115200 | PubMed ID:18981178 [Kitamura2008]
  86. Higgins MA, Whitworth GE, El Warry N, Randriantsoa M, Samain E, Burke RD, Vocadlo DJ, and Boraston AB. (2009). Differential recognition and hydrolysis of host carbohydrate antigens by Streptococcus pneumoniae family 98 glycoside hydrolases. J Biol Chem. 2009;284(38):26161-73. DOI:10.1074/jbc.M109.024067 | PubMed ID:19608744 [Higgins2009]
  87. Thompson AJ, Williams RJ, Hakki Z, Alonzi DS, Wennekes T, Gloster TM, Songsrirote K, Thomas-Oates JE, Wrodnigg TM, Spreitz J, Stütz AE, Butters TD, Williams SJ, and Davies GJ. (2012). Structural and mechanistic insight into N-glycan processing by endo-α-mannosidase. Proc Natl Acad Sci U S A. 2012;109(3):781-6. DOI:10.1073/pnas.1111482109 | PubMed ID:22219371 [Thompson2012]
  88. Xie J, Cai K, Hu HX, Jiang YL, Yang F, Hu PF, Cao DD, Li WF, Chen Y, and Zhou CZ. (2016). Structural Analysis of the Catalytic Mechanism and Substrate Specificity of Anabaena Alkaline Invertase InvA Reveals a Novel Glucosidase. J Biol Chem. 2016;291(49):25667-25677. DOI:10.1074/jbc.M116.759290 | PubMed ID:27777307 [Xie2016]
  89. Gregg KJ, Suits MD, Deng L, Vocadlo DJ, and Boraston AB. (2015). Structural Analysis of a Family 101 Glycoside Hydrolase in Complex with Carbohydrates Reveals Insights into Its Mechanism. J Biol Chem. 2015;290(42):25657-69. DOI:10.1074/jbc.M115.680470 | PubMed ID:26304114 [Gregg2015]
  90. van Straaten KE, Barends TR, Dijkstra BW, and Thunnissen AM. (2007). Structure of Escherichia coli Lytic transglycosylase MltA with bound chitohexaose: implications for peptidoglycan binding and cleavage. J Biol Chem. 2007;282(29):21197-205. DOI:10.1074/jbc.M701818200 | PubMed ID:17502382 [van_Straaten2007]
  91. van Asselt EJ, Kalk KH, and Dijkstra BW. (2000). Crystallographic studies of the interactions of Escherichia coli lytic transglycosylase Slt35 with peptidoglycan. Biochemistry. 2000;39(8):1924-34. DOI:10.1021/bi992161p | PubMed ID:10684641 [van_Asselt2000]
  92. Ndeh D, Rogowski A, Cartmell A, Luis AS, Baslé A, Gray J, Venditto I, Briggs J, Zhang X, Labourel A, Terrapon N, Buffetto F, Nepogodiev S, Xiao Y, Field RA, Zhu Y, O'Neil MA, Urbanowicz BR, York WS, Davies GJ, Abbott DW, Ralet MC, Martens EC, Henrissat B, and Gilbert HJ. (2017). Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature. 2017;544(7648):65-70. DOI:10.1038/nature21725 | PubMed ID:28329766 [Ndeh2017]
  93. McGuire BE, Hettle AG, Vickers C, King DT, Vocadlo DJ, and Boraston AB. (2020). The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens. J Biol Chem. 2020;295(52):18426-18435. DOI:10.1074/jbc.RA120.015776 | PubMed ID:33127644 [McGuire2020]
  94. Williams RJ, Iglesias-Fernández J, Stepper J, Jackson A, Thompson AJ, Lowe EC, White JM, Gilbert HJ, Rovira C, Davies GJ, and Williams SJ. (2014). Combined inhibitor free-energy landscape and structural analysis reports on the mannosidase conformational coordinate. Angew Chem Int Ed Engl. 2014;53(4):1087-91. DOI:10.1002/anie.201308334 | PubMed ID:24339341 [Williams2014]
  95. Pengthaisong S, Piniello B, Davies GJ, Rovira C, and Ketudat Cairns JR. (2023). Reaction Mechanism of Glycoside Hydrolase Family 116 Utilizes Perpendicular Protonation. ACS Catal. 2023;13(9):5850-5863. DOI:10.1021/acscatal.3c00620 | PubMed ID:37180965 [Pengthaisong2023]
  96. Hehemann JH, Smyth L, Yadav A, Vocadlo DJ, and Boraston AB. (2012). Analysis of keystone enzyme in Agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds. J Biol Chem. 2012;287(17):13985-95. DOI:10.1074/jbc.M112.345645 | PubMed ID:22393053 [Hehemann_2_2012]
  97. Huang CH, Sun Y, Ko TP, Chen CC, Zheng Y, Chan HC, Pang X, Wiegel J, Shao W, and Guo RT. (2012). The substrate/product-binding modes of a novel GH120 β-xylosidase (XylC) from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Biochem J. 2012;448(3):401-7. DOI:10.1042/BJ20121359 | PubMed ID:22992047 [Huang2012]
  98. Noach I, Pluvinage B, Laurie C, Abe KT, Alteen MG, Vocadlo DJ, and Boraston AB. (2016). The Details of Glycolipid Glycan Hydrolysis by the Structural Analysis of a Family 123 Glycoside Hydrolase from Clostridium perfringens. J Mol Biol. 2016;428(16):3253-3265. DOI:10.1016/j.jmb.2016.03.020 | PubMed ID:27038508 [Noach2016]
  99. Urresti S, Cartmell A, Liu F, Walton PH, and Davies GJ. (2018). Structural studies of the unusual metal-ion site of the GH124 endoglucanase from Ruminiclostridium thermocellum. Acta Crystallogr F Struct Biol Commun. 2018;74(Pt 8):496-505. DOI:10.1107/S2053230X18006842 | PubMed ID:30084399 [Urresti2018]
  100. Alonso-Gil S, Males A, Fernandes PZ, Williams SJ, Davies GJ, and Rovira C. (2017). Computational Design of Experiment Unveils the Conformational Reaction Coordinate of GH125 α-Mannosidases. J Am Chem Soc. 2017;139(3):1085-1088. DOI:10.1021/jacs.6b11247 | PubMed ID:28026180 [Alonso-Gil2016]
  101. Huang CH, Zhu Z, Cheng YS, Chan HC, Ko TP, Chen CC, Wang I, Ho MR, Hsu ST, Zeng YF, Huang YN, Liu JR, Guo RT. Structure and Catalytic Mechanism of a Glycoside Hydrolase Family-127 β-L-Arabinofuranosidase (HypBA1). J Bioprocess Biotech. 2014 4:171 DOI:10.4172/2155-9821.1000171

    [Huang2014]
  102. Santos CR, Costa PACR, Vieira PS, Gonzalez SET, Correa TLR, Lima EA, Mandelli F, Pirolla RAS, Domingues MN, Cabral L, Martins MP, Cordeiro RL, Junior AT, Souza BP, Prates ÉT, Gozzo FC, Persinoti GF, Skaf MS, and Murakami MT. (2020). Structural insights into β-1,3-glucan cleavage by a glycoside hydrolase family. Nat Chem Biol. 2020;16(8):920-929. DOI:10.1038/s41589-020-0554-5 | PubMed ID:32451508 [Santos2020]
  103. Sato M, Liebschner D, Yamada Y, Matsugaki N, Arakawa T, Wills SS, Hattie M, Stubbs KA, Ito T, Senda T, Ashida H, and Fushinobu S. (2017). The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors. J Biol Chem. 2017;292(29):12126-12138. DOI:10.1074/jbc.M117.777391 | PubMed ID:28546425 [Sato2017]
  104. Tsuda T, Nihira T, Chiku K, Suzuki E, Arakawa T, Nishimoto M, Kitaoka M, Nakai H, and Fushinobu S. (2015). Characterization and crystal structure determination of β-1,2-mannobiose phosphorylase from Listeria innocua. FEBS Lett. 2015;589(24 Pt B):3816-21. DOI:10.1016/j.febslet.2015.11.034 | PubMed ID:26632508 [Tsuda2015]
  105. Zhai L, Feng L, Xia L, Yin H, and Xiang S. (2016). Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations. Nat Commun. 2016;7:11229. DOI:10.1038/ncomms11229 | PubMed ID:27088557 [Zhai2016]
  106. Jin Y, Petricevic M, John A, Raich L, Jenkins H, Portela De Souza L, Cuskin F, Gilbert HJ, Rovira C, Goddard-Borger ED, Williams SJ, and Davies GJ. A β-Mannanase with a Lysozyme-like Fold and a Novel Molecular Catalytic Mechanism. ACS Cent Sci. 2016 Nov DOI:10.1021/acscentsci.6b00232

    [Jin2016]
  107. Yamada C, Gotoh A, Sakanaka M, Hattie M, Stubbs KA, Katayama-Ikegami A, Hirose J, Kurihara S, Arakawa T, Kitaoka M, Okuda S, Katayama T, and Fushinobu S. (2017). Molecular Insight into Evolution of Symbiosis between Breast-Fed Infants and a Member of the Human Gut Microbiome Bifidobacterium longum. Cell Chem Biol. 2017;24(4):515-524.e5. DOI:10.1016/j.chembiol.2017.03.012 | PubMed ID:28392148 [Yamada2017]
  108. Labourel A, Baslé A, Munoz-Munoz J, Ndeh D, Booth S, Nepogodiev SA, Field RA, and Cartmell A. (2019). Structural and functional analyses of glycoside hydrolase 138 enzymes targeting chain A galacturonic acid in the complex pectin rhamnogalacturonan II. J Biol Chem. 2019;294(19):7711-7721. DOI:10.1074/jbc.RA118.006626 | PubMed ID:30877196 [Labourel2019]
  109. Nakajima M. et al. Extensive distribution of β-1,2-glucanases: finding of new glycoside hydrolase families of β-1,2-glucanases. BioRxiv preprint 2024. https://doi.org/10.1101/2024.02.06.578578

    [Nakajima2024]
  110. Luis AS, Briggs J, Zhang X, Farnell B, Ndeh D, Labourel A, Baslé A, Cartmell A, Terrapon N, Stott K, Lowe EC, McLean R, Shearer K, Schückel J, Venditto I, Ralet MC, Henrissat B, Martens EC, Mosimann SC, Abbott DW, and Gilbert HJ. (2018). Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat Microbiol. 2018;3(2):210-219. DOI:10.1038/s41564-017-0079-1 | PubMed ID:29255254 [Luis2018]
  111. Bule P, Chuzel L, Blagova E, Wu L, Gray MA, Henrissat B, Rapp E, Bertozzi CR, Taron CH, and Davies GJ. (2019). Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action. Nat Commun. 2019;10(1):4816. DOI:10.1038/s41467-019-12684-7 | PubMed ID:31645552 [Bule2019]
  112. Tanaka N, Nakajima M, Narukawa-Nara M, Matsunaga H, Kamisuki S, Aramasa H, Takahashi Y, Sugimoto N, Abe K, Terada T, Miyanaga A, Yamashita T, Sugawara F, Kamakura T, Komba S, Nakai H, and Taguchi H. (2019). Identification, characterization, and structural analyses of a fungal endo-β-1,2-glucanase reveal a new glycoside hydrolase family. J Biol Chem. 2019;294(19):7942-7965. DOI:10.1074/jbc.RA118.007087 | PubMed ID:30926603 [Tanaka2019]
  113. Armstrong Z and Davies GJ. (2020). Structure and function of Bs164 β-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164. J Biol Chem. 2020;295(13):4316-4326. DOI:10.1074/jbc.RA119.011591 | PubMed ID:31871050 [Armstrong2020]
  114. Chen G, Dong S, Zhang Y, Shen J, Liu G, Chen F, Li X, Xue C, Cui Q, Feng Y, and Chang Y. (2024). Structural investigation of Fun168A unraveling the recognition mechanism of endo-1,3-fucanase towards sulfated fucan. Int J Biol Macromol. 2024;271(Pt 1):132622. DOI:10.1016/j.ijbiomac.2024.132622 | PubMed ID:38795894 [Chen2024]
  115. Kashima T, Okumura K, Ishiwata A, Kaieda M, Terada T, Arakawa T, Yamada C, Shimizu K, Tanaka K, Kitaoka M, Ito Y, Fujita K, and Fushinobu S. (2021). Identification of difructose dianhydride I synthase/hydrolase from an oral bacterium establishes a novel glycoside hydrolase family. J Biol Chem. 2021;297(5):101324. DOI:10.1016/j.jbc.2021.101324 | PubMed ID:34688653 [Kashima2021]
  116. Shuoker B, Pichler MJ, Jin C, Sakanaka H, Wu H, Gascueña AM, Liu J, Nielsen TS, Holgersson J, Nordberg Karlsson E, Juge N, Meier S, Morth JP, Karlsson NG, and Abou Hachem M. (2023). Sialidases and fucosidases of Akkermansia muciniphila are crucial for growth on mucin and nutrient sharing with mucus-associated gut bacteria. Nat Commun. 2023;14(1):1833. DOI:10.1038/s41467-023-37533-6 | PubMed ID:37005422 [Shuoker2023]
  117. Shimokawa M, Ishiwata A, Kashima T, Nakashima C, Li J, Fukushima R, Sawai N, Nakamori M, Tanaka Y, Kudo A, Morikami S, Iwanaga N, Akai G, Shimizu N, Arakawa T, Yamada C, Kitahara K, Tanaka K, Ito Y, Fushinobu S, and Fujita K. (2023). Identification and characterization of endo-α-, exo-α-, and exo-β-D-arabinofuranosidases degrading lipoarabinomannan and arabinogalactan of mycobacteria. Nat Commun. 2023;14(1):5803. DOI:10.1038/s41467-023-41431-2 | PubMed ID:37726269 [Shimokawa2023]
  118. Motouchi S, Kobayashi K, Nakai H, and Nakajima M. (2023). Identification of enzymatic functions of osmo-regulated periplasmic glucan biosynthesis proteins from Escherichia coli reveals a novel glycoside hydrolase family. Commun Biol. 2023;6(1):961. DOI:10.1038/s42003-023-05336-6 | PubMed ID:37735577 [Motouchi2023]
  119. Barbirz S, Müller JJ, Uetrecht C, Clark AJ, Heinemann U, and Seckler R. (2008). Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol Microbiol. 2008;69(2):303-16. DOI:10.1111/j.1365-2958.2008.06311.x | PubMed ID:18547389 [Barbirz2008]

All Medline abstracts: PubMed